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HI'Y.

Xomzunkuii Aprem ®egopoBuy

Hccnenosarens naboparopun kpunrorpaduu JetBrains, crynent 2-ro kypca MM®
HI'Y.

"~ Yepnuxon Bacuiauii BukropoBuu

HUccnenosareis gaboparopuu kpunrorpadpun JetBrains, cryment 2-ro kypca ®UT HI'Y.
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NSUCRYPTO 2019

Hama xomaHaa BBICTYHAaeT OCHOBHBIM OpPraHU3aTOPOM .
MexyHapoanon onumnuaasl NSUCRYPTO. L N S W) .
NSUCRYPTO — equHcTBeHHAs MEXTyHApOIHASI OJIMMITHA/Ia S| i b|u
o KpunTorpaguu, KoTopasi 0ObEeAUHAET KaK IMKOJLHUKOB U =l (1 B i
CTYJICHTOB, TaK U MPOo(EeCCHOHAIOB. 3a BpeMs CYIIeCTBOBAHUS

omumruanel (¢ 2014 roma) B HEWl NPHHSUIA ydacTHe OoJjiee
1600 yyacTHUKOB U3 56 cTpan mupa (cpeau Hux — crpanbl EC,
ctpanbl CHI', Kananma, Kwuraii, Wnmua, HOAP, HWpan, =

Nunounesus, BbetHaMm u ap.). [1o uToram kaxaou oauMmnuaibl a %‘
MyOJIMKYIOTCS Hay4YHbIE CTaTbU C pa30opoM mpolseM,

MPEUIOKEHHBIX YYaCTHUKAM, B TOM YHCJIE — HEPEIICHHBIX, TPEOYIOIMMX OTIACIBHOTO
Hay4YHOTO ucciegoBanus. OTIMUUTENIbHAS YepTa OJIMMITAA/IbI — BKIIFOUCHHUE B YHCIIO €€ 3a/1a4
HEpEIICHHBIX MpobieM Kpunrorpaduu u HHGOPMAIIMOHHON 0€30MaCHOCTH, MPEIIOKEHHBIX
BEIYIIMMHU CIICIIMAIMCTaMU B TAaHHOM 001aCTH. DTO KaK pa3 COOTBETCTBYET LIEJIM OJIMMITHAA]TbI
— MPUBJICYb MOJIOJIBIX MCCIIEIOBATEIEH K COBPEMEHHBIM BOIIPOCaM KPUMNTOrpaduu U OMOYb
UM CJIeNIaTh CBOM NMPOQeCCHOHAIBHBINA BHIOOD.

Omumnuana NSUCRYPTO — Non Stop University Crypto — mpoxouT eeroiHo, IpUHSTh B
HEW ydacThe MOXET Jito0oi xkenaromuii. OUimanbHbIi S3bIK OJUMINAIL — aHTJIUUCKUH.
Caiit — https://nsucrypto.nsu.ru.

Omumnuana 3apoawiack B Hopocubupckom Akanemropojike. B 2019 ronxy ona npoxoauia ¢
13 mo 21 okTa0ps B ABa HE3aBUCHUMBIX OTala: JUYHBIA W KoMmaHAHBIN. [lIKonbHUKH
Axanemropojika u ctyneHTsl HI'Y npuHsiiiv B Hell aKkTUBHOE y4acTHE.

P - =) - . -

anatal, g

Mpuzépoel onumnuadsl NSUCRYPTO
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https://nsucrypto.nsu.ru/

Opranmzanuum:

« Novosibirsk State University

« Sobolev Institute of Mathematics
« KU Leuven

. Belarusian State University

« Tomsk State University

IIporpaMMHBIN KOMHMTET:

« Gennadiy Agibalov (Tomsk State University, Russia)

o Sergey Agievich (Belarusian State University, Belarus’)

. Lilya Budaghyan (University of Bergen, Norway)

« Anne Canteaut (INRIA Paris, France)

« Claude Carlet (University of Paris 8, France)

. Joan Daemen (Radboud University, The Netherlands)

. Sugata Gangopadhyay (Indian Institute of Technology Roorkee, India)

« Evgeny Gorkunov (Novosibirsk State University, Russia)

« Anastasiya Gorodilova (Sobolev Institute of Mathematics, Russia) co-chair
« Tor Helleseth (University of Bergen, Norway)

« Xiang-dong Hou (University of South Florida, USA)

« Valeriya Idrisova (Sobolev Institute of Mathematics, Russia)

« Nikolay Kolomeec (Sobolev Institute of Mathematics, Russia)

« Alexander Kutsenko (Novosibirsk State University, Russia)

« Roman Lebedev (Novosibirsk State University, Russia)

« Nicky Mouha (Computer Security Division of NIST, USA)

. Svetla Nikova (KU Leuven, Belgium)

. Alexey Oblaukhov (Sobolev Institute of Mathematics, Russia)

« Irina Pankratova (Tomsk State University, Russia)

. Stjepan Picek (Delft University of Technology, The Netherlands)

. Bart Preneel (KU Leuven, Belgium)

« Marina Pudovkina (Bauman Moscow State Technical University, Russia)
« Vincent Rijmen (KU Leuven, Belgium; University of Bergen, Norway)

« Razvan Rosie (University of Luxembourg, Luxembourg)

« Alexander A. Semenov (Institute for System Dynamics and Control Theory, Russia)
« Francesco Sica (Nazarbayev University, Kazakhstan)

. Pante Stanica (Naval Postgraduate School, USA)

. Natalia Tokareva (Novosibirsk State University, Russia)

« Meltem Turan (National Institute of Standards and Technology, USA)

« Aleksei Udovenko (CryptoExperts, France)

IIpencenaresib NPOrpaMMHOI0 KOMHUTETA:

. Natalia Tokareva (Novosibirsk State University, Russia)

13



SAHIMUTHI BBIITYCKHBIX PABOT CTYJAEHTOB U
ACIIMPAHTOB JJABOPATOPHUHU B 2020 TOLY:

Brinycknast pabota acriupaHTa:

Cazonona [lonuna AnnpeeBna (pyk. - Tokapera H.H.)
Pa3paboTka MeTOA0B JIJIsl CUCTEMATU3AIUK OJI0KYEHH-TEXHOIOT Uil

Marucrepckue auccepTanuu:

banep mutpuit Anexcannposud (pyk. - Tokapesa H.H., Cazonosa I1.A.)
Development of methods for transaction analysis in blockchain network - PazpatoTka
METOJIOB aHaJIW3a TPAH3aAKIUNA B CETU OJIOKYEITH

benoycoBa Anuna AnekcannpoBHa (pyk. - Tokapesa H.H.)
Lai-Massey block ciphers and their properties - biounsie mmdpsl Tuna Jlas-Maccu u
MX CBOMCTBA

Hoponun Apremuii EBrenbeBud (pyk. - Kanrun K.B., Tokapesa H.H.)
Construction of cryptographic Boolean functions using SAT-solvers - Ilowmck
KpunTorpaduueckux OyneBbx QyHKIMIA ¢ moMonibio SAT-perrareneit

Makcummiok FOnus IlaBnosna (pyk. - EBnokumoB A.A.)
HccnenoBanue METpUYECKOTO JOMOJHEHHSI YITAKOBKH Iierell B OysieBoM KyoOe - Study
of the metric complements to chains packaging in Boolean cube

[Muntyc I'eopruii Muxaitnosuu (pyk. - Tokapea H.H., Kyuenko A.B.)
On decomposition of vectorial Boolean functions for threshold implementation - O
JIEKOMITO3UIIUY BEKTOPHBIX OYJIeBBIX (DYHKIIUM JIJIs1 TOPOTOBOM pean3aiiu

[Tanopenko Anekcanap Cepreesud (pyk. - Tokapea H.H., Kyuenko A.B.)
Quaternary bent functions: properties and connection to Boolean bent functions -
KBarepunapubie O€HT-QYHKIIMU: CBOWCTBA M B3aUMOCBSI3b C OYJIEBBIMU OCHT-
byHKIUAMU

BaKaHaBpCI(I/Ie JUCCCPTAallM:

Cyropmun UBan Anekcanaposud (pyk. - Konomeen H.A., 'opogunosa A.A.)
KoncTpykuunn coanancupoBaHHBIX OyJIeBbIX (PYHKINN C BBICOKON HETMHEHHOCTHIO

CoiueB Anekceii [Imutpuesud (pyk. - Tokapea H.H., Cazonona I1.A.)
PazpaboTka npoTokosa MEX-OJOKYEHH B3aUMOACHCTBHS ISl Clydas 3aJ0rOBOIO
yAEpKAHUS

Xunpuyk Mpuna Cepreesna (pyk. - Toxkapesa H.H.)
[Toctpoenue u ananus S-6JI0KOB CUMMETPUYHBIX IU(PPOB
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MASTER IN CRYPTO

B 2020 romy cocrosics BBITYCK CTYIEHTOB, MPOXOAMBIIMX OOYy4YEHHE IO YHUKAIbHON
marucrepckoi mporpamme "Master in Cryptography" wa 6aze MM® HI'Y, momHOCTBIO
OPraHU30BaHHOM HAIIEH KOMAaHJIOM.

"Master in Crypto" - mepBast B Poccuu aHIIosi3bpI9Has Maructparypa mno kpunrorpadun. Ee
OCHOBHAs IIeJIb — TPUBIICYh CUIBHBIX CTYJCHTOB CO BCEro MHpa JJIs TITyOOKOTO M3ydeHUS
TEOPETHUECKNX M TMPAKTUYECKUX ACIEKTOB COBPEMEHHON KpuNTOrpaduul W MaabHEHIIETro
BOBJICUCHUSI TEPCIIEKTUBHBIX CTYJIEHTOB B HAYYHO-HCCIICIOBATEIBCKYIO JCSITCIBHOCTHh B
JTAHHOI 00JIacTH.

JUist uTeHus TeKIuid ObUTH MPUTIIAIIeHbl POCCUICKHUE U 3apyOeKHbIE CIICIIUAINCTHI B 00JaCTH
KpunTorpaduu.

OOyueHue MpoBOIUIIOCH HA aHTJIMMCKOM SI3BIKE.
Kypchl, BKIIFOYEHHBIE B TPOTPAMMY:

Algebra and finite fields: special aspects
Discrete mathematics

Theory of probability and mathematical statistics
Numerical methods in cryptography

Information theory and cryptography. Introduction
Foundations of symmetric cryptography
Cryptographic Boolean functions

Cipher design

Cryptanalysis of symmetric system

Asymmetric cryptography and cryptanalysis
Blockchain: math problem and applications
Quantum and postquantum cryptography
Practical applications of cryptography

Historical and legal aspects of cryptography

Buinycknuku npoepamml «Master in cryptoy.
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Hosoctu s1adoparopun B 2019-2020 yuyedOHOM roay:

HI'Y 3anycmun xypc no kpunmoepaguu na Coursera

Hossrit kypc «Cryptography: Boolean functions and related problems» npeana3naden s TeX, KTO
UHTEpecyeTcs alfOPUTMaMH U METOJaMHU IIU(PPOBAHUA, a TAKKE BJIAJEET AHIVIMHCKUM S3BIKOM U
MaTeMaTHYeCKUMHU 3HaHUsAMHU. - KypcoB mo kpunrorpaduu CymecTByeT IOBOJIBHO MHOTO. B ToMm
qucsie BBOJHBIX U 0a30BbIX. OCOOEHHOCTBIO HAIIEr0 Kypca sIBJIETCS TO, YTO, HA4aB C IPOCTHIX OCHOB,
MBI OBICTPO TEpEeii/IeM K COBPEMEHHBIM MTPOoOIeMaM KPUITOTpapuu ¥ TOMOXKEM CITYIIATENSM ClIeaTh
IIepBbIE IIark B HAYYHOH KpunTorpaduu, NOJy4uTh HOBbIE Pe3ybTaThl. B IBYX cloBax Lienb Hallero
Kypca — CIyIaTeNs-TI00UTeNsT KpUunTorpaduu MPEeBpaTUTh B HCCIEAOBATENA. Ty LEIb MBI
IpeciesyeM U B IPOBOJUMON HAMHU €XEroJHO MexayHapoJHOH osiMMIuazae Mo Kpumnrorpaduu
NSUCRYPTO, u B Jlerneii mkomne mno xpunrtorpadpuu ¥ HHGOPMAIMOHHONW OE30MaCHOCTH, —
ormetmwina jaoueHt ®UT m MM® HI'Y, pykoBomurens HoBocuOupckoro Kpunrorpaduueckoro
nentpa Haranesa TokapeBa. Kypc cocTouT U3 isatv MOyIei, BO BpeMsl U3y4eHUsI KOTOPBIX CIIyIIaTeIn
MIO3HAKOMSTCSI C CAaMbIMU COBPEMEHHBIMU METOAAMU KpUMOTOTrpaguu, Haydarcss IPUMEHSTh pa3Hble
BUIBI OYJIEeBBIX (DYHKITUH 15 CO3IaHMSI HAJISKHBIX U (POB, a TAKKE Y3HAIOT, KAKHE IPOOIEMBI MOTYT
IIPU 3TOM BO3HUKHYTh M KaK C HUMH CIpaBUThCS. B dmcio mpenojaBaresneil BOIUIM HE TOJIBKO
corpyaaukn HI'Y, o m Creman Iluuek, mouent, nokrtop Hayk u3 Jlendrckoro yHuBepcurera,
KkoTopbIi 3aHuMaeT 50-10 crpouky QS World University Rankings.

Omxpuvimoie nekyuu Computer Science knyoa npu HI'Y "Ochoswl kpunmoananuza”

OcHoBbI KpuntoaHasinsa

Hatanbs HukonaesHa Tokapesa Jlexunu unraer Haranss Hukonaesna Tokapesa,
“ekBrainsRescql ch VIS B ALY K.Q.-M.H., C.H.C. WHCTHTyTa MATEMAaTHUKH WM.
20, 22, 29 despans, 16:20 — 19:50 C.JL.CoGoneBa, pykoBoauTens JlaGopaTopuu
HoBbI kopnyc HI'Y, aya. 4117 kpunrorpaduu JetBrains Research, pykoBoaurens
27 dpespans, 16:20 ~ 13:50 Kpunrorpapudeckoro Ilentpa (HoBocuGupck),
rnasHbin kKopnyc HI'Y, ayn. 442

nouent HI'Y.

Kypc B Buzeo-hopmaTe JOCTYIEH MO CCHUIKE:

Computer Science kny6 npu HI'Y .
ol bru https://nsk.compsciclub.ru/en/courses/

vk.com/csclubnsu cryptoanalysis/nsk/2020-spring/classes/

Compyonuxu nabopamopuu - Anexcandp Kyyenxo u Anexcei Obnayxog - npouiiu HAYUHYIO
cmadxcuposky 6 ynueepcumeme bepeena

C 3 ¢eBpans no 1 mapta 2020 rona Anekcannp Kynenko n Anekceit O61ayxoB CTaXKHUPOBAIUCH B
HayuyHo-uccienoBatenbckoM Selmer Center in Secure Communication YHuBepcurera beprena
(Hopserwust). 3a 3T0 Bpemsi ObUIM MPOBEICHBI COBMECTHBIE HAYUHBIE HCCIIEIOBaHUS, TPIKIBI pedsTa
BBICTYIIJIM Ha CEMUHApE J1ab0paTOpru:

13.02.2020 - A. Kutsenko, «Self-dual bent functions: characterization and metrical properties».
PaccMoTpeHbl W3BECTHBIE CBOWCTBA CaMOJyajbHbIX OCHT-QYHKIUN. W3II0KeHBI TOJTYYEeHHBIC
METPUYECKHE CBOWCTBA: MHHHMMAJIbHOE PACCTOSTHHE XOMMHHra MEXKIY CaMOAYalbHBIMH OCHT-
(GYHKIUSAMHU, CIEKTp pacCTOSHUN XAMMHHra MexAay OGyHKusMu wu3 Kiacca MboitopaHa-
Mak®apnanga. [lokazaHa MeTpuyeckass pEryJasipHOCTh M HAWJIEHO METPUYECKOE JIOMOJIHEHUE
MHO’KECTBA CaMOTyallbHBIX OCHT-(DYHKITHH.

20.02.2020 - A. Kutsenko, «The group of automorphisms of the set of self-dual bent functionsy.
[IpuBeneHsl MOJIydYeHHBIE PE3YAbTAThl IO HM30METPHUYECKUM  OTOOPaXEHHUSM MHOXKECTBA
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http://crypto.nsu.ru/media/filer_public/10/f4/10f45b8b-8080-460f-a019-99db9cbde62f/cryptography_from_nsu_on_coursera.mp4
https://nsk.compsciclub.ru/en/courses/cryptoanalysis/nsk/2020-spring/classes/
https://nsk.compsciclub.ru/en/courses/cryptoanalysis/nsk/2020-spring/classes/

camMoyanbHBIX OeHN-QyHKIMiA. JJoka3aHo, 9TO TPYIIBI aBTOMOP(PU3MOB MHOKECTB CAMOTYaTbHBIX U
aHTH-CAMOJIYaJIbHBIX OCHT-QYHKINH coBMagaroT. [l0OMHOCTBIO omucaHa Tpymnmna aBTOMOP(HU3MOB
MHOKECTBA CaMOTyallbHBIX OCHT-(DYHKITHH.

27.02.2020 - A. Oblaukhov, «Metric complements and metric regularity in the Boolean cubey.
W3naraioTcsi moslyueHHBIE pe3yNbTaThl, 3aTPAarvBaOIIME CBONMCTBA METPUUYECKUX JOMOJHEHUN
noaMHOXkecTB OyneBa kyOa. Haiimen oOmuii BHJ METPUYECKOTO JOMOJHEHHS JIMHEHHOTO
noanpoctpaHcTBa OyineBa KyOa. IlomyueHa HMKHSS OLIGHKAa Ha MOIIHOCTh MaKCHMalbHOTO
METPUYECKU PETYISIPHOTO MHOXKeCTBa. JlokazaHa MeTpHUecKasi perysipHOCTh Koj0B Puna-Maepa
RM(k, m) mns cimyqas k>=m—3.

Compyonuya nabopamopuu Ilonuna Cazonosa svicmynuia ¢ npusiauleHHbiM 00K1a00oM Ha cmpeye
"Digital Standup blockchain" ¢ /Jome Hnnosayuii I'aznpom neghpmo

[IpakTHUYeCKMMHM MPUJIOKEHUSAMU OJOKYEHH-TEXHOJIOTMM W HAay4YHbIMH pe3yJibTaTaMH B JaHHOU
00JIaCTH aKTHBHO MHTepeCyIoTcsi MHOrMe koMnanuu. Ha Berpeue 27 despains, npoxoausiiei B Jlome
WNunosanmii 'asnpom HedTh (1. Canxt-IlerepOypr), [lonnna CazoHoBa BhICTyNMIIA MPUTJIALIEHHBIM
noknaaunkoM u3 HoBocubupceka. OHa npeacraBuia nokia « TeXHOI0ruu pacipeieeHHOro peectpa
Kak ocHoBa »KOHOMUKHM Poccum». Ha BcTpeue obOcyxknamuch pe3ynbTaThl B 00nacTu OJOKYEHH-
TEXHOJIOTUH U BOIPOCHI MX BHEApeHUs ¢ ydactueMm npezacraButeneil IToutsl Poccun, Coepbanka,
Cubunrexa, Hopuukens, YuuBepcurera WMuHHOmonuc u np. opranmsauuii. Ha xpyrimom crore,
OpPraHU30BaHHOM II0CJI€ JIOKJIAJIOB, YYaCTHUKH OOCYAMJIM TIE€PCIEKTUBBI Pa3BUTHs OJIOKYEHH-
TEXHOJIOTUH U CYIECTBYIOIINE Oapbephl €€ MPUMEHEHUS.

o= —
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MHCK-2020. B MexnyHapoaHOH CTyIdeHYecKoi KoH(pepeHImH, exeroano mnposoanmoi HI'Y, B
2020 roxy nmpuHsIHM yyacTue 12 cTyIeHTOB J1abopaTopuu.

[TozmpaBisiem HamMX pedsT, 3aHABIIHMX pU30Bbie MecTa HAa MHCK!
B 5TOM rony oHa BriepBble IPOXOAMIIA B pekUMe OHJIakH. [Ipusépamu cranu:
Ceknus "Uudopm. rexnonorun'. [Moacexnus "MudopmarmonHas 6€30macHOCT"

o Enenma 3aBammmumua (aumiaom [ cremenu) "Kpunroananmu3 6a30Boil  BepcHH
KpUNTOrpaguuecKoi CUCTEMBI C OTKPBITHIM KJIIFOUOM, OCHOBAaHHOM Ha CIIOKHOCTHU PEIICHUS
CHCTEMbI IOJTMHOMHAIBHBIX YPAaBHEHHUH B IIEIBIX YUCIIAX

o Jlapes 3rwo6umna (mumuiom Il cremenum) "Kpunrorpaduyeckue cBoiictBa S-0J10Ka,
MIOCTPOSHHOT'O Ha OCHOBE OYJI€BOM ()YHKIMHU U NIEPECTaHOBKU"

o Jmurpuii banep (mumom III crenenn) "Pa3paboTka MeTo 0B aHanmu3a OJIOKYEHH ceTer"”

Cekmus "Matemaruka". [Tonacekius "Teoperudeckas kubepHeruka'
o Anekcanap [lanopenko (aurmiom III crenenun) "Csi3b KBaTepHApHBIX U OyJIEBBIX OCHT-

byHKIMII"

Crynenram naboparopuu kpuntorpaduu npucyxiaena Ilpemun JlsmyHoBa I cTemenun B KOHKypce
JTUTUIOMHBIX padot 2020 roxa!

o HO.Il.Makcummiok "MccnenoBanie METpUYECKOTO JIONOJHEHWS YNAKOBKM ILieneil B
OyneBoM kyOe"(Hayu.pyK.A.A.EBIOKHMOB)

o A.C.IIamopenxko "Quaternary bent functions: properties and connection to Boolean bent
functions” (mayu.pyk. A.B.Kyuenko, H.H.Tokapesa)

Corpynauk maboparopun Anekcanap KyleHko TpHHSAI ydYacTHEe B HAYYHO-TEXHHUUYCCKOU
koH(pepenumu "MudopmarrionHas 6e3onacHocTs" Ha 6a3e BoeHHOro HHHOBAIITMOHHOTO TEXHOIOJINCA
H9 n

pa

19-20 mapra MunncrepctBo 000poHBI Poccwiickoit ®Denepanun 1 BoeHHBI HHHOBAITMOHHBIH
texHononuc «OPA» mpoBenu BTOopyro Bcepoccuiickylo HaydHO-TIPaKTHUECKYIO KOH(EPEHIIHIO
«CocTosTHUE ¥ TIEPCIICKTUBBI PA3BUTHS HAYKHU 10 HanpaBieHuio «HbopMannoHHas 6€30MacHOCTEY.
Ee ydyacTHUKaMU cTanu npeacTaBUTENN BOCHHBIX U IPAKIAHCKUX BY30B, HAYYHO-HCCIIEI0BATENbCKUX
OpraHu3aluii, TPEANPUATUA BOEHHO-TPOMBINUIEHHOTO KomIuiekca ©  IT-xkommanuit. OnHu
MIPEJICTaBUIIN CBOM HapaOOTKH B 00JIaCTH KUOEpOE30MacCHOCTH.
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JleTHsis mikojia-koHPpepenuns « Kpunrorpadgus u unpopmanunonHas
0e3omacHocTb» 2020

Jletnss mkona-koHpepennus «Kpunrorpadbust u naGopmarmonHas 6€30MacHOCTDY —
TPaJUIIMOHHOE MeponpusTue, npoxoadiiee B cteHax HI'Y kaxnpiii ron. OpranuzaTopamu
mKoibl-kKoH(pepeHiiun ~ BeicTynatoT  Kpunrorpadguueckuit  mentp  (HoBocuOupck),
naboparopus kpunrtorpaduu JetBrains Research, Mexxaynapoaneiii MatemaTudeckuii L{eHTp
B AKaZieMropojke, opranu3atopsl MexayHapogaon omumnuagsl NSUCRYPTO, dakynbreT
uH(POPMAILIMOHHBIX TEeXHOJOTUH U MexaHuko-maTemaTnueckud (akyiapTer. OCHOBATENb
neTHuX 1Ko no kpunrorpadpun — npocdeccop ®UT Cepreit enopouu Kpennenes.

VYyacte B mIKOJE-KOHGEPEHIIMU MNPUHUMAIN CTYJIEHTBI, BBIMTYCKHUKMA IIKOJI U
mkonbHUKY 11 kimaccoB. Ilkona mpoxoauna ¢ 9 o 27 uionst B AUCTAaHIIMOHHOM (hopmare.

B Tedyenue Tpex Heenb co cTyieHTaMu paboTtanu okoo 15 npenoaasateneit. CTyaeHTHI
MPUHUMAIN Yy4YacTHE B JICKIUSAX, KOMAHJAHOW W WHAUBUIAYabHON paboTe B MPOEKTaX,
CBSA3aHHOM C pEIIEHWEM UCCIIEeNOBAaTEeIbCKUX 3aJad B 00JIaCTH KpUOTOrpapuu U
nH(OPMAITMOHHOW O€30ITaCHOCTH, B CIIOPTUBHBIX 3aHATUAX. OJTHO U3 BaXXHEHIITNX COOBITUI
IIKOJIBI-KOH(EPEHIIMU — KPYIJIBIA CTOJI 0 COBPEMEHHBIM MpobiiemaM kpunrtorpaduu. Tembl
MPOEKTOB OBUIM CBS3aHbI C PA3IUYHBIMU BOIPOCAMU COBPEMEHHOW KpunrTorpapuu u
MH(POpPMAITMOHHON 0€30MaCHOCTU: OT pa3padOTKH COBPEMEHHBIX METOJ0B KPUITOAHAIN3A,
MOCTPOCHUSI MU(POB, KBAHTOBOM KPUNTOTpaduu 1O CO3JaHUS CHUCTEM aHATUTUYECKOMN
pa3BeKU C OTKPBITEIM KojoM. B 2020 romy B pamkax JIETHEH MIKOJbI-KOH(QEPEHIIUU CO
CTyleHTaMu paboTanu npenogaBarenu u3 Poccuu, EBponsl u CIIA, B TOM 4KClie aBTOPHI
MEXIYHAPOJHBIX CTaHAApTOB B o0jacTu Kpuntorpaduu. YacTe mIKoOJIBI-KOH(DEpEeHIUN
MPOXOMJIA HA AHTJIMIICKOM SI3bIKE.

[komy ycrnenHo 3akoH4mm 52 ctyzieHTa (POBHO BABOE OOJIBIIE, YEM B TIPOLILIIOM TOAY).
Oto crynentsl u3 HI'Y (OUT, MMO®), TT'Y, TriomI'Y, HI'TY, MO®THU, Cubl'Y (KpacHosipck),
Aunraiickoro I'TY, EpeBaHckoro rocyHuBepcutreta (ApMeHHs) W MSATh IIKOJBHUKOB: U3
Cankr-IletepOypra, bepacka, Jlyxosurn, Crepnuramaka (pect. bamkoproctan), YcTh-
Kamenoropcka (Kazaxcran). Beero Ha mikoiry Ob110 mogaHo 96 3asBok.

PykoBoauTtesb mkojabl — K.¢.-M.H. TokapeBa Haranes HukonaeBna, noueHt xadeapsl
koMmbtoTepHbIx cucteM OUT, kapenapsr Teopetnyeckoit kudbepaetuku MM®, c.1.c. UM CO
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Jernsas wrona-Kondepenuus "K unrorpadus u uudo MallleHaﬂ 6e30nacnom" 2020 www.crypto.nsu.ru
|
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B 2020 roxy coTpyaHukamMu 1adopatopuu ObII0 OIMyOJUKOBAHO, a TAKXKE CIaHO
Y TIPUHSATO B ME€YaTh:

e O crareil B HAyYHBIX XXypHaIax
e / crarei B TpyAax KOHGEPEHIIUN, U3 HUX:

o 3 crareu B Tpynax SEIM - Conference on Software Engineering and
Information Management, 16 May 2020;

o 2 crateu B Tpyaax SETA - Sequences and Their Applications, 22-25
September, Russia, Saint-Petersburg. KondepeHuus BXoguT B peHTHHT
CORE (ypoBens B);

o 1 crates B Tpymax FedCSIS - Conference on computer science and
information systems, 6-9 September 2020, Sofia, Bulgaria.

o 1 crates B Tpynax CTCrypt — Cumnosuym «CoBpeMeHHbIEC TSHICHITUN
B kpunrorpadun», 15-17 centsaopsi, Poccus, Cankr-IletepOypr.

e 29 Te3ucoB KOHGEPEHIIN, U3 HUX:

o 3 tesucoB BFA - The 5th International Workshop on Boolean
Functions and their Applications, Granada, Spain, September 28 —
October 2, 2020;

o 14 tesucoB SIBECRYPT - Cubupckas HaydHas IIKOJa-CEMHUHAp C
MEXIAyHapoAHbIM ydacthem "KommbploTepHass 0€30MacHOCTh W
kpunrorpadus”, 7-11 centsops, r. Tomck;

o 12 TtesucoB MHCK - MexnayHaponHas Hay4Has CTyJICHUYECKas
koH(epenuus, r. HoBocubupck, HoBocubupckuii ['ocynapcTBeHHBINM
yHuBepcuteT, 10-13 anpens 2020 r.

o OmnyOnukoBan 100-cTpaHuuyHBIE COOPHHMK TE3UCOB JIETHEM IIIKOJIbI-
koH(pepenumu «Kpunrtorpadus u nadopmannonnas o6ezonacHocts» 2020.

B nannsbIii cOopHuk BKIIIOYEHBI 23 paboThl oT 61 aBTOpA.

COopnuk JocTyneH o ceblike: Nttp://crypto.nsu.ru/ru/letnyaya-
shkola/letnyaya-shkola-2020/

Jlanmee Mbl IPUBOJIUM TEKCThI CAMHUX MyOJIMKAIIAM.
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NPUKNAOHAA OANCKPETHAA MATEMATUKA

2020 TeopeTunyeckme OCHOBbLI NMPUKJIALHON OUCKPETHOW MaTeMaTUKN Ne 47

UDC 519.7 DOI 10.17223/20710410/47 /2
A NOTE ON THE PROPERTIES OF ASSOCIATED BOOLEAN
FUNCTIONS OF QUADRATIC APN FUNCTIONS!

A. A. Gorodilova

Sobolev Institute of Mathematics, Novosibirsk, Russia
Nowosibirsk State University, Novosibirsk, Russia

E-mail: gorodilova@math.nsc.ru

Let F' be a quadratic APN function in n variables. The associated Boolean function vz
in 2n variables (yp(a,b) = 1 if a # 0 and equation F(z)+ F(x + a) = b has solutions)
has the form vp(a,b) = ®r(a)-b+ ¢p(a)+ 1 for appropriate functions ®p : Fy — F4
and ¢ : F§ — Fy. We summarize the known results and prove new ones regarding
properties of ®r and ¢pp. For instance, we prove that degree of ®p is either n or less
or equal to n — 2. Based on computation experiments, we formulate a conjecture that
degree of any component function of ®r is n — 2. We show that this conjecture is
based on two other conjectures of independent interest.

Keywords: a quadratic APN function, the associated Boolean function, degree of a
function.

Introduction

Let Fy be the n-dimensional vector space over Fy. Let 0 denote the zero vector of I}
and 1 denote the vector with all 1s. By «+» we denote the coordinate-wise sum modulo 2
for vectors from F3. Let -y = x1y1 + ... + x,y, denote the inner product of vectors
= (21, ),y = (Y1, yn) EFY z <y if x; <y; foralli =1,... n; and wt(x) =
= > z; denote the Hamming weight of v € F5. A set M C FY forms a linear subspace

i=1
if t+y € M for any z,y € M, the dimension of M, dim(M), is the maximal number
of linearly independent over 5 vectors from M. We consider vectorial Boolean functions
F :Fy — Fy, F = (fi,..., fm), where f; : Fy — Ty i = 1,...,m, is a coordinate
function of F. The algebraic normal form (ANF) of F is the following unique representation:
F(z)= > as (H xi), where P(N) is the power set of N = {1,...,n} and a; € F3".

1€P(N) i€l
The algebraic degree of F is degree of its ANF: deg(F') = max{|[|: a; # 0, I € P(N)}.
Function of algebraic degree at most 1 are called affine (they are linearin case of F/(0) = 0).
Functions of algebraic degree 2 are called quadratic. The Walsh transform Wy : Fy — Z of
a Boolean function f : Fy — Fy is defined as Wy(u) = 3 (=1)/@+u2 For F the Walsh

z€Fy
spectrum consists of all Walsh coefficients Wg, (u), u € Fy, v € Fi*, v # 0, where F, = v - F
is a component Boolean function of F.
A function F' from F3 to itself is called almost perfect nonlinear (APN) (according to
K. Nyberg [1]) if for any a,b € Fy, a # 0, equation F(z) + F(z + a) = b has at most
two solutions. APN functions are of special interest for using as S-boxes in block ciphers

!The work was funded by RFBR. (projects no. 18-31-00479, 18-07-01394); by the program of fundamental
scientific researches of the SB RAS no. [.5.1, project no. 0314-2019-0017; Regional Mathematical Center NSU
and Laboratory of cryptography JetBrains Research.
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due to their optimal differential characteristics. Despite the fact that APN functions are
intensively studied (see, for example, the book of L. Budaghyan [2], surveys of A. Pott [3],
M. M. Glukhov [4], and M. E. Tuzhilin [5]), there are a lot of open problems on finding new
constructions, classifications, etc.

In [6], C. Carlet, P. Charpin, and V. Zinoviev introduced the associated Boolean function
v : F3" — Ty for a given vectorial Boolean function F' from FY to itself; yr(a,b) = 1 if and
only if a # 0 and equation F'(x) + F(x + a) = b has solutions.

Two functions are called differentially equivalent |7 (or ~y-equivalent according to
K. Boura et al. [8]), if their associated Boolean functions coincide. The problem of describing
the differential equivalence class of an APN function remains open even for quadratic case.
That is why we are interested in obtaining some properties of vr. We will focus on quadratic
APN functions.

Let F' be a quadratic APN function. Then the set B,(F) = {F(x)+ F(z +a) : x € F}}
is a linear subspace of dimension n — 1 or its complement for a nonzero a € Fy. Using this
fact, v# can be uniquely represented in the form

'7F<a7b) :(I)F(a)'b—i_QOF(a)—f—l?

where @ : Fy — F2 @p : FY — Fy are defined from B, (F')

{y e F3: ®r(a)-y = ¢r(a)}
for all @ # 0; and ®(0) = 0, ¢r(0) = 1. Note that B,(F) is a linear subspace if and only
if or(a) = 0. It is easy to see that (F(z) + F(z + a) + F(a) + F(0)) - ®p(a) = 0 for all
x € F} by definition.

In this paper we study the properties of functions ®r and ¢p.

1. Properties of pr and ¢
In this section we summarize known results and present new ones about properties of &
and pp. As it usually happens the cases of even and odd number of variables are different.
1.1. The image set of ®p
According to [9], let us denote AX = {a € F} : ®p(a) = v}.
Theorem 1 [6, 9]. Let F' be a quadratic APN function in n variables.
1) If nis odd, then ® is a permutation.

2) If n is even, then the preimage ® of any nonzero vector is a linear subspace of even

dimension together with the zero vector.

Note that state 1 in Theorem 1 means also that vy is a bent function of Maiorana —
McFarland type (readers may find details regarding bent functions in [10]).

Corollary 1. Let F be a quadratic APN function. Then ®r takes an odd number of
distinct nonzero values.

Proof. By definition of ¢, we have ®r(0) = 0.

If n is odd, then ® is a permutation [6]. Hence, the proposition holds.

Let n be even. It is known [9] that the preimage set AL = {z € F} : ®p(z) = v}
for any nonzero v € F} represents a linear subspace of even dimension together with the
zero vector. Let @ € {0,vy,...,v,}, where v;, i = 1,...,m, are pairwise distinct nonzero
vectors. We need to prove that m is odd. We have

2" —1=Al |+ AL =2 =1 42— =20 4 2M

where \;, i = 1,...,m, are nonzero even numbers. Since 2" — 1 is odd, then m is also odd.m
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1.2. The degree of ¢

Proposition 1. Let F be a quadratic APN function in n variables, n is even. Then
deg(pr) = n, or, equivalently, wt(¢r) is odd.

Proof. Tt is known [9] that AZ U {0} is a linear subspace of even dimension if n is
even for any nonzero v € F3. Also [9], there exists ¢, € Fy such that pp|sr = ¢, - z|ar.
Hence, wt(pr|4r) is an even number equal to 0 or 24™(AU{OH-1 for any nonzero v and
©r(0) = 1 by definition. Thus, wt(¢r) is odd. It is widely known that wt(f) is odd if and

only if deg(f) = n for any Boolean function in n variables. m
The case of odd n remains open. Based on our computational experiments for all known
quadratic APN functions of not more than 11 variables, we can formulate the following

Conjecture 1. Let F' be a quadratic APN function in n variables, n is odd. Then
deg(pr) < n, or, equivalently, wt(¢r) is even.

1.3. The degree of op

Theorem 2 [7|. Let F be a quadratic APN function in n variables, n > 3, n is odd.
Then deg(®r) < n — 2.

The following theorem contains a similar bound for even n.

Theorem 3. Let F' be a quadratic APN function in n variables, n > 4, n is even.
Then each coordinate function of ®p is represented as (Pp)i(z) = fi(z) + Ni(22... 2, +
+ XT3 T+ FTTe . T +931...33n), where deg(f;) <n—2 and \; € Fy.

Proof. Let L :Fy — 3 be a linear function. Then it is easy to see that

vrir(a,b) = yep(a,b+L(a)) = (b+L(a))-Pr(a)+pr(a)+1 = b-Pp(a)+pr(a)+L(a) Pr(a)+1.

Hence, ®p,; = P and ppri; = @r + L- Pp. By Proposition 1, deg(ypr) = deg(pryr) = n,
since F'+ L is also a quadratic APN function. Thus, deg(L-®r) < n for any linear function L.

Suppose that deg(®r) = n. This means that there exists a coordinate function (®r); of
degree n. Let us represent

(Pr)i(x) = filx) + ar1mg ... xy + a22123 ... Ty + ...+ QT T2 T F T Ty,

where deg(f;) <n—2and ay,...,a, € Fs.

— If a; = 0, then deg(L - ®p) = n for L = (0,...,0,2;,0,...,0), where z; is the i-th
coordinate function of L. Hence, we get a contradiction.

— If a; =1 for all j, then it is easy to see that we will always have deg(L - ®r) < n for
any linear function L.

Suppose that deg(®r) = n — 1. Similarly,

(Pr)i(x) = filx) + arxg. .. xpy + a2x123 ... Ty + ...+ QT T2 . Ty,

where at least one coefficient is equal to 1, say a;. Then deg(L - @) =n for L = (0,...,0,
x;,0,...,0), where z; is the i-th coordinate function of L. Hence, we get a contradiction.

Thus, (®r); is of degree not more than n — 2 or all monomials of degree n — 1 and n
are included in the ANF of (®p);. m

Remark 1. For all known quadratic APN functions in not more than 11 variables, we
computationally verified that

— for even n, the case deg((®r);) = n is not realized;

28


Free Hand


A note on the properties of associated Boolean functions of quadratic APN functions

— any component function of ®r has degree exactly n — 2.
Based on our computational experiments we can formulate the following

Conjecture 2. Let F' be a quadratic APN function in n variables, n > 3. Then
deg(v - ®p) = n — 2 for any nonzero v € F}.

2. Does the equality deg(®r) =n — 2 hold?

In this section we study the following question: “Is conjecture 2 true or not?”.

For example, consider an APN Gold function F(z) = 2 1, ged(n, k) = 1 (the function
is given as a function over the finite field of order 2"). Its associated Boolean function is
known [6]: vr(a,b) = tr((a® t1)~'b) +tr(1) + 1 (here tr is the absolute trace function in the
finite field of order 2"). So, we have ®p(a) = (a* 1)1, ®x(0) = 0, and as it is easy to see
deg(®r) = n — 2 (since it is well-known that the degree of a function F(x) = x? is equal to
the 2-weight of the integer d modulo 27).

We wonder whether conjecture 2 is true or not for arbitrary n. Let us focus on the case
of odd n since in this case we have the bound of Theorem 2. For even case, the consideration
could be rather similar but with assumption that deg(®r) is not equal to n, that is only a
conjecture up to now.

Step 1. Let I be a quadratic APN function of n variables, n is odd, n > 5; v be a
nonzero vector from [F3. We need to prove that deg(v- ®p) = n — 2 for any nonzero v € Fj.

We use the following widely known equality for counting the ANF coefficients of a
Boolean function f in n variables:

gf(a>:(2wt<a>—1—2m<a>—n—1 > Wf(b)> mod 2. (1)
b=(a+1)

We need to show that there exists a vector a¥ with wt(a”) = n — 2 such that g,.¢,(a") = 1.
Equivalently, that there exist coordinates ¢, 7, 1 < i # 7 < n, such that

Z WU"PF (b) = Wv"I’F (O) + WU@’F (ez) + Wv.ch(ej) + WU@F(ei + ej)

b=(a"+1)

is not divided by 16 according to (1). Here €' is the vector with 1 in the i-th coordinate
and Os in other coordinates. Let us introduce the following sets:

M ={z€F}:v-®p(x) =0, z-¢" =0},
M ={zcFy:v-®p(x)=0, v ¢ =0},
M7 ={x €Fy:v-®p(x) =0, z-(e" +¢) =0}
Then, we have
Yo Weap(b) =4|MY — 2" + 4| M7| — 2" + 4| M| — 2" =

b=(a¥+1)
= 4(| M| + |M7| 4+ |MY]) —3- 2" = 42" + 2[M7|) — 3. 2" = 8| M| — 2",

where M ={z €F? :v-®p(z) =0, z-¢' =0, z-¢/ =0}.
Step 2 Thus, we need to prove that there exist coordinates i,j, 1 < i # j < n,
such that |My'| is odd (since we consider n > 5). From |7, prop.7|, we know that

M={x e€Fy:v Op(x) = 0} = |J Ay, where A, is a linear subspace of dimension 2,
el
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and A, N Ay = {0}, {,k € I, { # k. Since ®f is a permutation, then |M| = 2"~! and
1] = (2 - 1)/3,

Let us consider an arbitrary A4, = {0, 2%, y*, x’+y*}. Then for any distinct coordinates i, j
of 2, 3¢, 2 + y* we have the following situations (without permutations of rows):

1) 1] 1] 1] 1)

xt 00 00 00 00 01
y' 00 or 01 or 10 or 11 or 10
a4+ y* 00 01 10 11 11

Hence, the number of z°, 3¢, 2° 4 ¢ together with 0 that belong to the set Méj is equal to
143 -NJ+1-NJ +0-NJ, where N + N/ + N = |I| = (2""'=1)/3, and N}/, k = 0,1, 3,
is the number of Ay, ¢ € I, having exactly k vectors with both coordinates ¢ and j equal
to 0. Thus, |M| is odd if and only if N is odd.

S tep 3. Now, we need to prove that there exist coordinates 7,7, 1 < i # j < n, such
that Néj is odd. We found the following interesting property (computationally verified for
n = 5) that we formulate as a conjecture.

Conjecture 3. Let M = [J Ay, where A is a linear subspace of dimension 2, and

ter
Ay N Ay = {0}, b,k € I, 0 # k, |I| = (2»! — 1)/3. Then the set M is a hyperplane
{z € F} : x,, = 0} for some coordinate m if and only if the number of subspaces A, without
elements having both coordinates ¢ and j equal to 0 is even for any distinct coordinates ¢, 7.

Step 4.If Conjecture 3 is true, then we need to prove that M = {z € F} : v-®p(x) = 0}
cannot be a hyperplane {x € F} : z,,, = 0} for some coordinate m.

Conjecture 4. Let ' be a quadratic APN function in n variables, n > 5. Then
{z € F} :v- ®p(z) = 0} is not a linear subspace.

We computationally verified this property for all known quadratic APN functions for
n =>5,...,11 and formulate the conjecture.

Thus, by proving Conjectures 3 and 4, we can prove the starting Conjecture 2.
Unfortunately, each of them remains open up to now.

Conclusion

The following question is open: what properties must a Boolean function satisfy in
order to be the associated function for some vectorial function? Even a partial answer to
the question provides a potential method to find new APN functions if we can choose
“admissible” Boolean functions as . For example, using the algorithm from [8] for
reconstructing APN functions from its associated functions. Another reason why we study
the properties of associated functions is that they may lead to new results in the differential
equivalence classification of APN functions.
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Abstract. NSUCRYPTO is the unique cryptographic Olympiad containing scientific mathe-
matical problems for professionals, school and university students from any country. Its aim is
to involve young researchers in solving curious and tough scientific problems of modern cryp-
tography. From the very beginning, the concept of the Olympiad was not to focus on solving
olympic tasks but on including unsolved research problems at the intersection of mathematics
and cryptography. The Olympiad history starts in 2014. In 2019, it was held for the sixth time.
In this paper, problems and their solutions of the Sixth International Olympiad in cryptography
NSUCRYPTO’2019 are presented. We consider problems related to attacks on ciphers and hash
functions, protocols, Boolean functions, Dickson polynomials, prime numbers, rotor machines,
etc. We discuss several open problems on mathematical countermeasures to side-channel attacks,
APN involutions, S-boxes, etc. The problem of finding a collision for the hash function Curl27
was partially solved during the Olympiad.
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Introduction

NSUCRYPTO (Non-Stop University Crypto) is the International Olympiad in cryptography that
was held for the sixth time in 2019.
Interest in the Olympiad around the world is significant. This

year, there were hundreds of participants from 26 countries; 42 Ton to TE.
participants in the first round and 21 teams in the second round o E
from 16 countries were awarded with prizes and honorable diplo- wlillo r |y =,
mas. The Olympiad program committee includes specialists from )
Belgium, France, the Netherlands, the USA, Norway, India, Lux- 1 |m|d- w
embourg, Belarus’, Kazakhstan, and Russia. N

Let us shortly formulate the format of the Olympiad. One P !
of the Olympiad main ideas is that everyone can participate! a
Each participant chooses his/her category when registering on the .
Olympiad website [15]. There are three categories: “school stu- i|dj|d e |

dents” (for junior researchers: pupils and high school students),

“university students” (for participants who are currently studying at universities) and “profession-
als” (for participants who have already completed education or just want to be in the restriction-free
category). Awarding of the winners is held in each category separately.

The Olympiad consists of two independent Internet rounds: the first one is individual (du-
ration 4 hours 30 minutes) while the second round is a team one (duration 1 week). The first
round is divided into two sections: A — for “school students”, B — for “university students” and
“professionals”. The second round is common to all participants. Participants read the Olympiad
problems and submit their solutions using the Olympiad website. The language of the Olympiad
is English.

The Olympiad participants are always interested in solving different problems of various com-
plexities at the intersection of mathematics and cryptography. They show their knowledge, creativ-
ity and professionalism. That is why the Olympiad not only includes interesting tasks with known
solutions but also offers unsolved problems in this area. This year, one of such open problems,
“Curl27” (see section 2.14), was partially solved during the second round! All the open problems
stated during the Olympiad history can be found here [16]. On the website we also mark the
current status of each problem. For example, in addition to “Curl27”, the problem “Sylvester
matrices” was solved by three teams in 2018, the problem “Algebraic immunity” was completely
solved during the Olympiad in 2016. And what is important for us, some participants were trying
to find solutions after the Olympiad was over. For example, a partial solution for the problem “A
secret sharing” (2014) was proposed in [9]. We invite everybody who has ideas on how to solve the
problems to send your solutions to us!

The paper is organized as follows. We start with problem structure of the Olympiad in section 1.
Then we present formulations of all the problems stated during the Olympiad and give their detailed
solutions in section 2. Finally, we publish the lists of NSUCRYPTQO’2019 winners in section 3.

Mathematical problems and their solutions of the previous International Olympiads in cryptog-
raphy NSUCRYPTO from 2014 to 2018 can be found in [2], [1], [14], [10], and [11] respectively.

1 Problem structure of the Olympiad

There were 16 problems stated during the Olympiad, some of them were included in both rounds
(Tables 1, 2). Section A of the first round consisted of six problems, whereas the section B contained
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seven problems. Three problems were common for both sections. The second round was composed
of eleven problems. Five problems of the second round included unsolved questions (awarded special
prizes from the Program Committee).

Table 1: Problems of the first round

[ N [ Problem title

‘ Maximum scores

[ N | Problem title | Maximum scores | —— : -
1 | A 1024-bit key 1 utumn leaves
- 2 | The magnetic storm 4
2 | The magnetic storm 4 -
3 | A rotor machine 4
3 | Autumn leaves 4
- 4 | 16QAM 8
4 | A rotor machine 4 -
5 | A promise and money 6
5 | Broken Calculator 4
6 T A promi 6 6 | Calculator 6
promse 7 | APN + Involutions 7
Section A Section B
Table 2: Problems of the second round
| N [ Problem title [ Maximum scores
1 A 1024-bit key 4
2 | Sharing 6 + additional scores for open questions
3 | Factoring in 2019 8
4 | TwinPeaks-3 8
5 | Curl27 10 + additional scores for open questions
6 | 8-bit S-box Unlimited (open problem)
7 | A rotor machine 4
8 | 16QAM )
9 Calculator 6
10 | APN + Involutions (extended) | 12 + additional scores for open questions
11 | Conjecture Unlimited (open problem)

2 Problems and their solutions

In this section, we formulate all the problems of NSUCRYPTO’2019 and present their detailed
solutions paying attention to solutions proposed by the participants.

2.1 Problem “A 1024-bit key”

2.1.1 Formulation

Alice has a 1024-bit key for a symmetric cipher (the key consists of Os and 1s). Alice is afraid of
malefactors, so she changes her key everyday in the following way:

1. Alice chooses a subsequence of key bits such that the first bit and the last bit are equal to 0.
She also can choose a subsequence of length 1 that contains only 0.

2. Alice inverts all the bits in this subsequence (0 turns into 1 and vice versa); bits outside of
this subsequence remain as they are.

Prove that the process will stop. Find the key that will be obtained by Alice in the end of the
process.

Example of an operation. 11001 01101110011... turns to 11001 10010001 011...
N—— ——
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2.1.2 Solution

Let us encode the binary vector of the key as the corresponding decimal number. It is obvious that
this number will increase on the next day, since all the bits on the left from the sequence are not
changing, but the first bit of the sequence turns from 0 to 1. Let us note that this number can not
increase infinitely since the size of the key is restricted by 1024 bits, so, in the very end the key
will be maximal possible and, thus, will consist of all 1s.

Almost all the participants successfully solved the problem.

8

2.2 Problem “The magnetic storm”

2.2.1 Formulation

A hardware random number generator is a device that generates random sequences consisting of
Os and 1s. Unfortunately, a disturbance caused by a magnetic storm affected this random number
generator. As a result, the device had generated a sequence of Os of length &k (where k is a positive
integer), and then started to generate an infinite sequence of 1s.

Prove that at some point the generator will produce a number 1...10...0 that is divisible by

2019.

2.2.2 Solution

Let us prove that a number of form 1...11...1 is divisible by 2019. Consider all numbers that

consists only of 1s, since there are infinite quantity of these numbers, there can be found a pair

of numbers A and B such that they have the same remainder when divided by 2019. Therefore,

C=A-—B=1...10...0 consisting of m 1s for some natural m is divisible by 2019, and, since 2019

is not divisible by 2 and 5, C* = Cx10...0=1...10...0 is divisible by 2019 for any number of Os.
There were a lot of correct solutions from the participants.
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2.3 Problem “Autumn leaves”

2.3.1 Formulation

Read a hidden message!..

2.3.2 Solution

We see different leaves and spaces between them. It looks like a simple substitution cipher was used
there and distinct leaves corresponded to distinct English letters. By English grammar, we can
suppose that the second and the third words are “is a”. Then the first word starts with “a” and by
its structure can be “autumn” (which is very likely as the autumn landscape is depicted). Also, the
leaf ¥ is the most common letter in the text and we can guess that it is “e”. Then we see “*eax*”
in the third line that seems to be “leaf”. As a result the last word becomes “fl**ex” that is
“flower”. Finally, we get “Autumn is a second spring when every leaf is a flower” that
is a famous quote by Albert Camus. Almost all the participants read the message.
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2.4 Problem “A rotor machine”
2.4.1 Formulation

In one country rotor machines were very useful for encryption of information.

Eve knows that for some secret communication a simple rotor machine was used. It works with
letters0, P, R, S, T, Yonlyand has an input circle with lamps (start), one rotor and a reflector.
See the scheme below.

inputside outputside

start photo ,  photo reflector
o’ ® ®
Yo = of ° o
T@ eor @ ¢ o
@ = \
scheme of the ROTOR

The input circle and the reflector are fixed in their positions while the rotor can be in one of 6
possible positions. After pressing a button on a keyboard, an electrical signal corresponding to the
letter goes through the machine, comes back to the input circle, and the appropriate lamp shows
the result of encryption. After each letter is encrypted, the rotor turns right (i.e. clockwise) on
60 degrees. Points of different colors on the rotor sides indicate different noncrossing signal lines
within the rotor.

For instance, if the rotor is fixed as shown on the picture above, then if you press the button
0, it will be encrypted as T (the signal enters the rotor via red point, is reflected and then comes
back via purple line). If you press 0 again, it will be encrypted as R. If you press T then, you will
get S and so on.

Eve intercepted a secret message: TRRYSSPRYRYROYTOPTOPTSPSPRS. Help her to decrypt it keep-
ing in mind that Eve does not know the initial position of the rotor.

2.4.2 Solution

To solve the problem and decrypt the message, one needs to correctly understand the scheme of
work. A key for the cipher is the initial position of the rotor. We denote it by a color of the circle
on the input side of the rotor that corresponds to the letter 0. Table 3 represents the encryption
tables depending on the key.

Trying all six possible keys, we find the only one meaningful message POST TO TOP 00PS SORRY
STOP ROTOR that corresponds to the “yellow” key.

Almost all the participants solved the problem. The most interesting solutions were obtained by
creating real models for this rotor machine, for example by a school student Varvara Lebedinskaya
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Table 3: Encryption tables

0 PR S T Y 0 PR S T 'Y

red |[T Y S R 0O P green |[S R P 0 Y T
white |[R S 0 P Y T yellow |S T Y 0O P R
purple |[Y R P T S 0O blue |[R T 0O Y P S

(The Specialized Educational Scientific Center of Novosibirsk State University), by the team of
Kristina Geut, Sergey Titov, and Dmitry Ananichev (Ural State University of Railway Transport).

2.5 Problem “Broken Calculator”
2.5.1 Formulation

Alice and Bob are practicing in developing toy cryptographic applications for smartphones. This
year they have invented Calculator that allows one to perform the following operations modulo
2019 (that is to get the result as the reminder of division by 2019):

e to insert at most 4-digit positive integers (digits from 0 to 9);
e to perform addition, subtraction and multiplication of two numbers;
e to store temporary results and read them from the memory.

Suppose that Alice wants to send Bob a ciphertext y (given by a 4-digit integer). She sends y
from her smartphone to Bob’s Calculator memory. To decrypt y, Bob needs to get the plaintext
x (using his Calculator) by the rule: z is equal to the remainder of dividing f(y) = y°+ 1909y +
401y by 2019.

At the most inopportune moment, Bob dropped his smartphone and broke its screen Now, the
button as well as all digits except and are not working.

Help Bob to invent an efficient algorithm how to decrypt any ciphertext y using Calculator in
his situation. More precisely, suggest a short list of commands, where each command has one of
the following types (1 < j, k < 4):

Si=y, Si=a, S;=8;—5 S;=5j*05,

where a is an at most 4-digit integer consisting of digits 1 and 5 only; for example, a = 1, a = 15,
a =551, a = 5115, etc.

The first command has to be S; = y. In the last command, the resulting plaintext x has to
be calculated. We remind that all calculations are modulo 2019. In particular, the integer 2500
becomes 481 and —1000 becomes 1019 immediately after entering or calculations. The shorter the
list of commands you suggest, the more scores you get for this problem.

Example. The following list of commands
calculates z = y? — 55:

Command Result
S1=y (]
SQ = 51 * Sl y2
Sy = 11 11
Sy=5 5
55 = 53 * S4 55
S¢ =52 — S5 | vy — 55
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2.5.2 Solution

Let us present the original solution by the programm committee that has 14 steps.
Let a =,,, b mean that integers a and b are congruent modulo m. The following relations hold:

F(y) =2019 y° + 1909y + 401y
=2019 y(y4 —110y% + 401)
=010 y(y* — 2 % 55y 4 552 — 552 + 401)
=019 y((y* — 55)° 552 +5%222)
=019 y((y* — 55)% — 112 % (5% — 5 % 2%))
((y* — 55) — 112 %5)
((y% = 55)% — 11 % 55).

=2019 Y

=2019 Y

Thus, the reminder of division of f(y) by 2019 can be calculated for any y by the list of commands
given in Table 4. A similar solution was found by Borislav Kirilov (Bulgaria, The First Private
Mathematical Gymnasium).

Table 4: List of commands for the programm committee solution

Command Result | Command Result Command Result

Slzy y 54232—53 y2—55 57253*S6 11 %55

SQ = 51 * Sl y2 55 = S4 * 54 (y2 — 55)2 Sg = 55 - 57 (y2 - 55)2 — 11 %55
S3 =55 55 Se =11 11 Sg = S1%Ss | y((y* —55)* — 11 % 55)

Note. The polynomial f(y) = y° +1909y3 +401y is the Dickson polynomial D5 (y, a) = y° —5y3a +
5ya? for a = 22 with coefficients taken modulo 2019.

2.6 Problem “Calculator”
2.6.1 Formulation

Alice and Bob are practicing in developing toy cryptographic applications for smartphones. This
year they have invented Calculator that allows one to perform the following operations mod-
ulo 2019:

e to insert at most 4-digit positive integers (digits from 0 to 9);
e to perform addition, subtraction and multiplication of two numbers;
e to store temporary results and read them from the memory.

Suppose that Alice wants to send Bob a ciphertext y (given by a 4-digit integer). She sends y
from her smartphone to Bob’s Calculator memory. To decrypt y, Bob needs to get the plaintext
x (using his Calculator) by the rule x = f(y) mod 2019, where f is a secret polynomial known to
Alice and Bob only.

At the most inopportune moment, Bob dropped his smartphone and broke its screen Now, the
button as well as all digits except are not working.

Help Bob to invent an efficient algorithm how to decrypt any ciphertext y using Calculator in
his situation if the current secret polynomial is f(y) = y° + 1909y + 401y. More precisely, suggest
a short list of commands, where each command has one of the following types (1 < j,k < 9):
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Si =y, S; = 2, S; = 222, S; = S; — Sk,
S; = 22, S; = 2292, S; = S; * Si.

The first command has to be S; = y. In the last command, the resulted plaintext = has to
be calculated. We remind that all calculations are modulo 2019. In particular, the integer 2222
becomes 203 immediately after entering. The shorter the list of commands you suggest, the more
scores you get for this problem.

Example. The following list of commands
calculates x = y? — 4:

Command Result
S1=y Yy
52 = Sl * Sl y2
S3 =2 2
54 = 53 * 53 4
Ss=Sy—S54 | vy —4

2.6.2 Solution

The polynomial f(y) = y® + 1909y> + 401y is the Dickson polynomial Ds(y, a) = 3° — 5y3a + 5ya?
for a = 22 with coefficients taken modulo 2019. The following relations hold:

Ds(y,a) = yDa(y,a) — aDs(y, a)
= yDa(D2(y, a), a*) — aDs(y, a)
=y((y* - 20)* - 2a%) — ay(y® — 2a — a).
For a = 22, the value f(y) can be calculated for any y by the list of commands given in Table 5.

Table 5: List of commands for the programm committee solution

Command Result Command Result

Si=vy y Ss = S7 % .57 (y? — 2a)?

SQ =2 2 Sg = 58 — S5 (y2 — 2&)2 - 2&2
S3 =22 a S10 = S1 * Sy y((y? — 2a)? — 2a?)
54252*53 2a 511257—52 y2—2a—a

55 = Sg * S4 2a2 512 = Sl * 511 y(y2 —2a — a)
Se=S51%51 | y? S13 = S3 x S92 ay(y? — 2a — a)
S7=56—54 | y* —2a | Sia=S10— 513 | f(y)

What was surprising that the participants found two solutions that has 11 and 13 steps! These
solutions were awarded by additional points. The solution with 11 steps were found by Madalina
Bolboceanu (Romania, Bitdefender) during the first round (Table 6). The solution with 13 steps
were given by Henning Seidler and Katja Stumpp team (Germany, TU Berlin) during the second
round. Both of the solution were based on the representation f(y) = y((y* — 44)(y? — 66) — 222).

2.7 Problem “A promise”

2.7.1 Formulation

Young cryptographers, Alice, Bob and Carol, are interested in quantum computings and really
want to buy a quantum computer. A millionaire gave them a certain amount of money (say, X4
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Table 6: List of commands for the 11-step solution

Command Result || Command Result

Slzy Yy 57256—54 y2—44—22

So=51%81 | y? Sy = Se*xS7 | (y? —44) = (y* — 44 — 22)

Sz =2 2 Sg=S,x8S, | 222

Sy =22 22 S10=Sg — So | (y? —44) * (y?> — 44 — 22) — 222
Sy = S3x S5y | 44 S11=51*510 | f(y)

S =Sy — S5 | y> —44

for Alice, Xp for Bob, and X¢ for Carol). He also made them promise that they would not tell
anyone, including each other, how much money everyone of them had received.

e Could you help the cryptographers to invent an algorithm how to find out (without breaking
the promise) whether the total amount of money they have, X4 + Xp + X¢, is enough to
buy a quantum computer?

e What weaknesses does your algorithm have (if someone breaks the promise)? Does it always
protect the secret of the honest participants from the dishonest ones?

2.7.2 Solution

This problem is a particular case for the problem “A promise and money” for only three participants
(see section 2.8).

2.8 Problem “A promise and money”
2.8.1 Formulation

A group of young cryptographers are interested in quantum computings and really want to buy a
quantum computer. A millionaire gave them a certain amount of money (say, n cryptographers;
X; for each of them, i = 1,...,n). He also made a promise from them that they would not tell
anyone, including each other, how much money everyone of them had received.

e Could you help the cryptographers to invent an algorithm how to find out (without breaking
the promise) whether the total amount of money they have, > " , X;, is enough to buy a
quantum computer?

e What do you think whether there are such algorithms protecting the secrets of honest par-
ticipants from dishonest ones?

e What weaknesses does your algorithm have (if someone breaks the promise)? Does it always
protect the secret of honest participants from dishonest ones?

2.8.2 Solution

Here we give an idea of the solution proposed by Mikhail Kudinov (Bauman Moscow State Technical
University).

First of all, it is supposed that no one can buy a quantum computer himself without other
participants. Let us assume that N’ is the amount of money that one needs to buy a quantum
computer and N = nN’, where n is the number of participants. The millionaire gave them X;
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money for i € {1,...,n}. Each of participants chooses random secrets s; ; uniformly so that
n
ZSW =X, (mod N).
j=1

Then each of then gives the share s; ; to the owner of X; by the secure channel. After this procedure,

the owner of X; has shares s;,; for each k € {1,...,n}. It is obvious that
n n n
ZZSW = ZX@ (mod N)
j=1i=1 i=1

Under the first suggestion, all participants can together calculate the common amount of money.

The main disadvantage of the algorithm, in addition to the sugges-
tion, is a big amount of private communication (though the number
of keys can be n for asymmetric schemes).

Analogically, many participants described algorithms similar to
Schneier’s calculating average salary algorithm [13]. In general, all
such algorithms are vulnerable if n — 1 participants are dishonest.
Some participants tried to describe a possibility to use a cryptosystem,
that is homomorphic by “+” and preserves relation “<”, as a general
analysis.

The problem of the first school round is the same problem for
n = 3 (score assignment was more loyal). Despite there was a quite
big number of solutions for this problem in the student round, each
solution had big or small lacks in analysis of the general case, in
analysis of the algorithm advantages and disadvantages, in description
of communications (number of private communications, what kind of
cryptography is used, number of required private keys) and so on. As
a result, there was no possibility to chose “best of the best” for 6
scores and we decided to give 5 scores as maximum. There were nine IBM’s 50 qubit quantum
maximal-scored solutions. computing system [21]

2.9 Problem “16QAM?”
2.9.1 Formulation

For sending messages, Alice and Bob use a fiber-optic communication via 16QAM technology. This
technology allows to send messages whose alphabet consists of 16 letters, where each letter is usually
encoded with a 4-bit Gray code. While a message is transmitted in the channel, single errors in
codewords of the Gray code are possible.

Alice has read an interesting book and would like to share her enthusiasm with Bob! Alice sent
a short fragment from the book to Bob. Due to the characteristics of the communication channel
used, she divided the text into two parts and sent them separately. In the first part, she placed
all of the 16 consonants that occurred in this fragment; in the second part, she placed vowels (“y”
is a vowel), a space, a hyphen and punctuation marks. Then Alice also encoded the letters with
Hamming code to be able to correct single errors. She applied a 7-bit Hamming code with the
parity-check matrix whose columns are written in lexicographical order.

Bob received the following two parts of ciphertext (given in hexadecimal notation):
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Part 1

66674C36666F43D3C199900AA1AA325992A
67A59D9B4A8B69330D1BC0O00153367A5E33
D30E6692D0F349D3321FFFFOED706667A7TF
670D999679F4AA67561BA679B4AA54F34D5
ABOF4AACCFO00055CE633670D9DAS4CE37F
660DE19CD995335495523CCAAA8F1E03325
86CF48A98CD9B387FDOD546A99E9D200033
3201513FE5B4AA00CCCE9667554CD2CCCB3
330F32A666553CD756AC3EQ0674E9D369E1D
C6A9999780007F00961E66465519FEA8B25
14CCCB332AA63332CCCE6D2A99AACCCCO04

Part 2

66CA61967319CCD2CE76998CE6433332D19
B46784C65334E999A402ADA0265A99A6633
33319B32D3299698CCC96986619967134CC
B4CE23333334CC6730CEQ90170CCCD2CE669
996A61999EA63332CCA4C3332D4CD3334CC
D3319994730CCCD3A6669D96A66999699B3
98640CC86CE619676AD4CD3308999866D33
79321C33210B4C6732199B53218019A404C
D2DE65A986663398CCCCCB5319CC6665997
B96A63398CDI9CCD2CDIA399A66339866619
98CD9CC325A6339CCE619998C04C66CE633

996A61998CF66967334CC66CA6199865E(0)2

Also, he received the following number sequence: 22, 19, 3, 3, 36, 53, 3, 33, 20, 28. Each number
indicates how many consonants are contained between the punctuation marks.
Recover the text and find the main character of the book Alice has read!

2.9.2 Solution

Some details in the problem statement are insignificant. Namely, we could omit the step with the
Gray code and mind that Alice substitutes 7-bit codewords of the Hamming code for each symbol
in each part of the plaintext.

The crucial idea to broke the cipher Alice and Bob use is analyzing the frequency distribution
in each part of the ciphertext. This helps to deduce the probable meaning of the most common
symbols and form partial words. Tentative search for combinations of consonants and vowels giving
actual words in English expands the partial solution. Frequencies of pairs of letters also give an
improvement but it could seem inessential. At last, one can employ search engine on the Internet
to find the fragment of the book that Alice sent to Bob.

Let us consider a possible solution. Alice uses the Hamming code with the parity check matrix
H and the corresponding generator matrix G, where

N N RS EAES

H=1011001 1|, G=
Lo 10101 0101010
1101001

First, rewrite each part of the given ciphertext in the binary form. Split them into 7-bit words and
correct errors using the parity check matrix H. One can decode the Hamming code into a 4-bit
Gray code but it is not a necessary step for the solution. Calculating frequencies of codewords
separately in each part of the given ciphertext, we put them in Table 7.
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Table 7: Frequencies of Hamming codewords in the text

Gray code | Hamming code | Frequency Gray code | Hamming code | Frequency
1011 0110011 46 0100 1001100 85
0010 0101010 30 1011 0110011 50
1001 0011001 24 1001 0011001 33
0001 1101001 24 0001 1101001 26
0011 1000011 19 1010 1011010 17
0000 0000000 15 0011 1000011 9
0110 1100110 13 0000 0000000 8
1100 0111100 8 1110 0010110 7
1111 1111111 8 1100 0111100 2
1101 1010101 7 0010 0101010 1
0100 1001100 6 1000 1110000 1
1110 0010110 5 0111 0001111 0
1010 1011010 5 0101 0100101 0
0101 0100101 4 1101 1010101 0
1000 1110000 4 0110 1100110 0
0111 0001111 2 1111 1111111 0

a) Part 1 b) Part 2

Compare the frequencies obtained with those of letters in the English language. The suitable
frequency distribution can be found in [12], which is cited, e. g., at [20]. According to Lewand,
arranged from most to least common in appearance, the letters are:

etaoinshrdlcumwfgypbvkjzxgqz

We start with vowels, punctuation marks, spaces, and a hyphen, which are placed in Part 2.
Make a guess that the most frequent symbol in Part 2 is the space. It is also worth to note
that most of punctuation marks are followed by a space in contrast to a hyphen, which is usually
embraced by letters. Using letter frequencies, we determine the probable spaces, vowels, and
hyphen, and construct the following partial solution for this part of the plaintext (the sign #
substitutes punctuation):

ee ae e oe 0 e ua iaia# e 00 oy-oy 1 o0 ea ee# u# ea# auae o ie ea o e aoy a oe

0ilaieae# aioooeae aoooio iee ay ue aeii o aa aie# uuay# e uai uy oy

0oc i aeecailececac# i eceoceeoecaaceatt ecauye el aeoeoeeaat

Let us turn to Part 1, which contains 16 consonants occurring in the fragment of the book.
Let us order the codewords of the Hamming code from most to least frequent in Part 1, as it is
shown in Table 7a. Denote the 7-bit codewords by hexadecimal numbers from 0 till F. Then we get
the following ciphertext of 220 symbols in length that is splitted into 10 pieces (according to the
number sequence given in the task):

023402C43E0251412B0103  02C1B32407551003703 4A3 B46 33A4884CE02E804020631094106311739943

1675510A0040C1068047266101D10619FF56D4031A00048090103 355

025108B315023021A3020246102173994 E2333C72410275585D46 021281BD102021A0202631016055

Then we match symbol frequencies in Part 1 of the ciphertext with those of consonants in the
English alphabet. The first five pairs are like as follows: 0 - t,1 - n,2 - s/h,3 - s/h,4 - r.

The bigram th is the most frequent in English. This allows us to make a suggestion that 2
substitutes h and 3 substitutes s. Then we obtain a partial solution for Part 1 and, combining
with one for Part 2, get the following pieces of the plaintext given in Table 8. It is not difficult
to recognize words these are the at the beginning in (1). Also, we can see the as the first word
in (2) and (8).
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Table 8: Partial plaintext
No. | Partial plaintext
(1) | thsrthCrsEth5nrnhBtnts
ee ae e oe 0 e ua iaia#
(2) | thCnBshrt755ntts7ts
e 00 oy-oy 1 o ea ee#

(3) | rAs
u#
(4) | Br6
ea#t

(5) | ssAr88rCEthE8trtht6snt9rnt6snn7s99rs

auae o ie ea 0 e aoy a oe o i a i eae#

(6) | n6755ntAttrtCnt68tr7h66ntnDnt6nIFF56DrtsnAtttr8totnts
aioooeae aooo0io iee ay ue aeii o aa aie#
(7) | sb5

uuay#

(8) | th5nt8Bsn5thsthnAsththrénthn7s99r

e uai uy oy oe i a e ea i e ecae#

(9) | EhsssC7hrnth75585Dr6

i e ee oeee 0 e a a ee a#

(10) | thnh8nBDnththnAthth6sntn6t55

eeauy ee el aeoeoee aat

The best idea for the next step is to search through the English dictionary for words that have
given vowels in the prescribed order. It is possible to use one of the tools for pattern recognition
available on the Internet, e. g., [19]. Advanced participants of the Olympiad implemented some
computer programs on their own.

Consider several examples. We have a word with consonants s55 and vowels uuay in (7), and
the last two consonants are identical. The only match is usually, so we assume that 5 substitutes
the letter 1. The pattern auae in combination with double s gives us two possibilities in (5) —
assuage and sausage. In any case, it seems like A means g. Then we have rugs in (3). The
pattern uai and consonants 5nt8B lead us to lunatic in (8), so 8 probably means c.

At this point we revise our matching the letters and their frequencies corresponding to the
Part 1 of the ciphertext. Let us look at the first eight letters with large frequencies: t n h s r 1
6 7/c. We can see that the letter d has still been hidden. According to the Lewand distribution
it is the most probable that 6 means d. Then (4) contains Brd and ea what gives us possible words
beard and bread. Therefore, it seems like B substitutes b.

A thoroughly analysis of the remaining ciphertext and search for words by patterns and number
of letters eventually lead us to the plaintext (with punctuation replaced by #):

these are the mores of the lunar inhabitants# the moon boy-shorty will not eat
sweets# rugs# bread# sausage or ice cream of the factory that does not print
ads in newspapers# and will not go to treatment a doctor who did not invented
any puzzle advertising to attract patients# usually# the lunatic buys only
those things that he read in the newspaper# if he sees somewhere on the wall
a clever ad# then he can buy even the thing that he does not need at all#

This is a fragment of the fairytail novel “Dunno on the Moon” by Russian writer Nikolay Nosov.

The title character of the novel is a boy-shorty Dunno. The problem was completely solved by 13
teams in the second round and by Samuel Tang (Hong Kong, Black Bauhinia) in the first round.

45



The best solutions were proposed by the team of Irina Slonkina, Mikhail Sorokin, and Vladimir
Bobrov (Bauman Moscow State Technical University), and the team of Vladimir Paprotski, Dmitry
Zarembo, and Karina Kruglik (Belarusian State University).

2.10 Problem “APN + Involutions”

The first three questions Q1, Q2, Q3 were given as the problem “APN + Involutions” in the first
round. The extended version of the task for the second round included also the question Q4 that
contains open problems.

2.10.1 Formulation

Alice wants to construct a block cipher with heavy use of involutions as subcomponents; this
minimizes difference between the algorithms for encryption and decryption. She knows that APN
permutations are the best choice of subcomponents to resist attacks based on differential tech-
nique. She wants to construct a set of APN permutations that are involutions for every n > 2.

Alice knows that any involution can be expressed as the product of disjoint transpositions.
So, she decides to study the following involution

d

g = H (Oéi, O/i),

i=1
where {a;,o/;} N{aj,a’;} =0 for all 4,5 € {1,...,d}, i # 4,1 <d <2 L
Alice needs your help to get APN permutations among such involutions g. Find answers to the
following questions!
Q1 Let R
A(g) = {ai D i=1, ...,d}, A(g) = [041' @i i=1, ...,d],
B(g) = {roy: {z,y} CFixP(g), x #y}, Blg) = [z@y: {z,y} CFixP(g), = #y],
where FixP(g) is the set of all fixed points of g, i.e. FixP(g) = {z € F} : g(z) = z}.

Suppose that g is an APN permutation. Get necessary conditions for multisets K(g), B(g) and
sets A(g), B(g). Prove that if your conditions do not hold, then g is not an APN permutation.
Q2 Let
dap(9) = {z € Fy : g(x @ a) @ g(x) = b}, a,beFy.
Let g be an involution and APN. Find dg4(g) for each nonzero a € Fy.

Q3 Can you get the nontrivial upper bound on |FixP(g)|?
Q4 Let M, be the set of all n-bit involutions that are APN permutations.

(a) Can you find the cardinality of M, for n = 2,3,47
(b) Can you find the cardinality of M, for n = 57

(c) Bonus problem (extra scores, a special prize!)

Let n > 6. Can you get the lower and the upper bounds for the cardinality of M,,?
Can you describe involutions from M,,? Can you suggest constructions for involutions
from M,,?
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Note that the mapping = + 2! in the Galois field GF(2") belongs to M,, for odd n > 3.

Remark. Let us recall relevant definitions.

F?% is the vector space of dimension over Fy = {0, 1}.

o A vector x € F} has the form x = (x1, ..., zy,), where z; € Fy. For two vectors z,y € F4 their

sumis x By = (x1 D Y1, ..., Tny D Y ), where @ stands for XOR operation.

Let X = [5131, - l’d] be a multiset with the underlying set Fy, where z1,...,z4 € 5.

Note that all elements in a set are distinct. Unlike a set, a multiset allows for multiple
instances for each of its elements.

A permutation s is a mapping from F to F§ such that s(x) # s(y) for all z,y € Fy, z # y.

e An involution s is a permutation that is its own inverse, s?(x) = s(s(x)) = x for all z € F}.

For any different vectors a, € F§, a permutation s is called a transposition if s(a) = 3,
s(B) = a and s(x) = z for all z € FH\{«, 8}; it is denoted by s = (o, ).

A permutation s is called APN (Almost Perfect Nonlinear) if, for every nonzero a € F4 and
every b € F3, the equation s(z @ a) @ s(x) = b has at most 2 solutions.

2.10.2 Solution

Q1

Q2

Let a € A(g). Hence, a = z &y, where y = g(x) and (z,y) = (a4, o) for some i. Then
gxda)=gy)=z=y®a=g(x)Dda.

Let a € B(g). Hence, a = x @y, where z,y € FixP(g). Then
gleda)=gly)=y=r®a=g(x) &a

Thus, dg,4(g) > 2 for any vector a € A(g) UB(g).
Let g be an APN permutation. Then d,q(g) = 2. Hence, the multiplicity of all elements

~

from A(g) and B(g) is 1. Thus, A(g) = A(g) and B(g) = B(g). Note that A(g) N B(g) = 0.
Since g is an APN permutation, then dg (g) < 2. As we get in Q1, d, 4(g) = 2 for any vector
a € A(g) UB(g). Let us prove that d, 4(g) =0 for a ¢ A(g) UB(g).

Let a be a nonzero vector and z be a solution of g(z@®a) @ g(x) = a. Since g is a permutation,
then either z € FixP(g) or = o; (z = o) for some i. Consider two cases:

1. Let z € FixP(g). Then, g(x ® a) ® g(z) = a implies g(z ® a) = v @ a. Hence, @ a €
FixP(g). As a result, a € B(g).

2. Without loss of generality, let x = «; for some i and y = = @ a. If y € FixP(g), then
g(x @ a) ® g(x) = a implies g(x) = x, which is a contradiction. Hence, without loss of
generality, y = o; for some j (so, we have o; © o) = a). Then

gl ®a)®gly) =a = gla)) @y =a = a; ® o =a.
Let us show that o} and «; is also solutions. Indeed,
9(e; @ a) @ g(eg) = g(a;) Doy = D =a
and
9(ey @ a) ® g(a;) = g(eg) B o = a; B o = a.
Thus, if ¢ # j, we get at least 3 solutions that is contradiction for the APN property of
g. Hence, j =i and a € A(g).
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Q3 Let us prove that |FixP(g)| < 1+ (2! —1)1/2.
The involution g is APN. From Q1 we have

B(g) N A(g) = 0. (1)

Let ¢ = |FixP(g)|. Since g is an involution, we have that ¢ is even. From equality (1) and
A(g) UB(g) C F3\{0} it follows that

[A(9)] + [BB(g)] < 2" — 1. (2)
Since [B(g)| = (2), [A(g)| = 271 — g/2, we have
[A(9)| +[BB(9)| = q(q — 1)/2+2""" — q/2.
From inequality (2), we get
glg—1)/24+2" —g< 2" - 1.

Thus,

glg—2)/2<2" 1 -1,
i.e.

q < 1 + (2n—1 _ 1)1/2.

Q4 (a) It could be computationally verified that My = () and |M3| = 224. Then, it is known [3]
that there are no APN permutations for n = 4. Hence, My = 0).

(b) Let us recall several definitions. A function A : Fy — F% is affine if A(x @ y) =
A(z) @ A(y) @ A(0) for any =,y € Fy. Two functions F,G : F} — F4 are called affine
equivalent if there exist affine permutations A, As such that F' = Aj o F o As. It is easy
to see that the APN permutation property of a function is an invariant under the affine
equivalence. There exist [3] only five the affine equivalence classes of APN permutations.
Moreover, by [3, theorem 3] only one class contains functions together with their inverses.
Hence, only this class of APN permutations can contain involutions. The representative
of this class is the famous inverse function over the finite field: F(x) = 2~! for nonzero
x and F'(0) = 0 (here, functions from F to F§ are considered as functions over the finite
field of order 2™). The inverse function is an involution. Thus, all APN involutions for
n = 5 are affine equivalent to the inverse function.

(c) There were no interesting suggestions by the participants for these open problems.

The unique full correct solution in the first round was proposed by Henning Seidler (Germany,
TU Berlin). In the second round, the best solution for 11 scores was proposed by the team of
Kristina Geut, Sergey Titov, and Dmitry Ananichev (Russia, Ural State University of Railway
Transport, Ural Federal University).

2.11 Problem “Sharing”

2.11.1 Formulation

Bob is interested in studying mathematical countermeasures to side-channel attacks on block ci-
phers. He found out that techniques such as special sharings of functions can be applied. Now he
is thinking about the following mathematical problem in this approach.
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Let F denote the set of invertible functions (permutations) from F3 to F5 and " denote
the set of invertible functions from (F3)" to (F3)". Let F' € F" be

F(z1,2z2,...,2,) = (Fi(x1,22,...,20), Fa(z1,22, ..., 2p) ..., Fu(x1, 22, ..., Tp)),
with component functions F; : (F3)" — Fa,i=1,...,n.

For any f € F, a function F' € F" is called a sharing of f if

ZFi($1,$2,~-,$n) =f (Zm) for all (z1,x,...,2,) € (F3)"™.
i=1 i=1

Moreover, F' is a non-complete sharing of f if F' is a sharing of f with the additional property
that each component function F; is independent of x;.

Bob needs your help to study functions for which non-complete sharing exists. Find answers to
the following questions!

Q1 Let A denote the set of affine functions from F3 to F3. Two functions f,g € F are affine
equivalent if there exist a,b € A such that g =bo foa.
Let f, g be two functions in the same affine equivalence class of F and let F' be a non-complete

sharing of f. Derive from F' a non-complete sharing for g.

All functions of the same affine equivalence class have the same degree. It is known [4] that
this equivalence relation partitions F into 302 classes: 1 class corresponds to A, 6 classes contain
quadratic functions, 295 classes contain cubic functions.

Also, Bob knows that when n > 5, there exists a non-complete sharing for each f € F (it can
be shown by construction). When n = 2 a non-complete sharing exists only for the functions in .A.
When n = 3, non-complete sharings exist for A and also for 5 out of the 6 equivalence classes
containing quadratic functions. When n = 4, non-complete sharings exist for A, for all 6 quadratic
equivalence classes and for 5 cubic classes.

Q2 Bonus problem (extra scores, a special prize!)

Find a concise mathematical property that a function f € F must have in order that a
non-complete sharing F' exists for n = 3, 4.

Q3 Bonus problem (extra scores, a special prize!)

Generalize to functions over F3, F$.

2.11.2 Solution

Q1 Let f,g be two functions in the same affine equivalence class of F, that is g = bo f o a for
some a,b € A, and let F' € F" be a non-complete sharing of f. At first, one can notice that
since f, g are invertible, the mappings a, b must be invertible as well. Let us denote

a(z) = Az +d/, = €T3,

b(z) = Bx + b, z €T3,

where A, B are nonsingular binary matrices of order 4 x 4 and o/, V' € F3.
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Q2-Q3

Using components functions {F;};; of F, we define the invertible function G € F" with
components functions

Gj(xlal‘z,...,xn)—{ 1 (Azy +d, Axg, ..., Axy) + U, ) :

- BF] (A.ZL‘l"‘a/,Ax%“‘?Axn)’ ]#1’

where j =1,2,...,n.

Then for any (x1, 22, ...,2,) € (F%)n, it holds

n
ZG]- (z1,22, ..., xn) = BFy (Azy + d', Azg, ..., Azy) + '+
j=1

+ ZBFj (Axl +a, Axs, ...,A:cn) =B ZF]- (Axl +a', Az, ...,Axn) +b =
j=2 j=1

:Bf(Axl—l—a’—i—Aacg—l—...—i—Axn)—i—b':Bf +b =

A(ZZ:;%) +d

G (z1,22,....2n) = (G1 (z1, 22, ey ) , G2 (T1, T2, ooy Tp) 5 ooy G (X1, 22,5 o, X))

Therefore, the function G € F' defined as

is a sharing of g.
From non-completeness of F' it follows that G, which is in fact an affine transformation of

F}, does not depend on z;. Hence, GG is a non-complete sharing of g.

These open problems were not solved completely during the Olympiad. Nevertheless, one per-
spective solution was proposed by the team of Victoria Vlasova, Mikhail Polyakov, and Alexey
Chilikov (Bauman Moscow State Technical University). They found a sufficient condition for
the existence of non-complete sharing for n = 3. Let us describe it here.

Let wt(y) be the Hamming weight of a binary vector y. For o € [y, we denote

o (y) = {y 7=t

0, 0=0,

where 0 is a zero vector of the same dimension as y.

Let V be a vector space over the field K and assume that for the invertible function f : V — V

it holds .
Do (=)y (Z 3o, (m)) =0, (3)
=1

oclky
then there exists a non-complete sharing for f. Further we conider the case n = 3.

Indeed, for any (x1, 22, 73) € V3 put

Fl ($17$27x3) = f ($2) - f (:1:2 + IIJ‘3) )
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Fy (z1,22,23) = f (v3) — f (21 + x3),
F3(z1,m2,23) = f(21) — f (21 + 72) .

It is clear that every F; : V3 — V does not depend on z;, where i = 1,2,3. Consider the
expression

3

D Fi(w1,w,w3) = f (w2) = f (wa +a3) + [ (23) = f (w3 +a1) + [ (21) = f (w1 +22) =

i=1

3
= Z (1)) f (Z o, (m1)> + f(z1+ 224+ 23) — f(0) = f (21 + 22+ x3) — £(0).
i=1

UGF%

Without loss of generality we assume that f(0) = 0, otherwise we can consider the initial
problem for the function g(z) = f(z) — f(0) with g(0) = 0 and which, by the arguments
from Q1, has non-complete sharing if and only if f does.

Finally
3

ZFi (z1,72,23) = f (21 + 22 + 3),
=1

that concludes the proof.

It was also shown by the authors that the condition (3) is necessary for the existence of
non-complete sharing of f for any n.

Taking V = F5* with m = 4,5,6 and K = Fy one can obtain a solution of Q2, Q3 for the
case n = 3.

2.12 Problem “Factoring in 2019”
2.12.1 Formulation

Nicole is learning about the RSA cryptosystem. She has chosen random 500-bit prime numbers p
and ¢, 2% < p,q < 2°%9 and computed n = p - q. Being a curious and creative person, she has
also combined the three numbers in funny ways. Her favorite one is an integer h such that

h = 3201952 1 520192 (mod n? 4 8- 2019).

Unfortunately, she has lost the paper where she wrote the two prime numbers. Luckily, she
remembers n and h. Help Nicole to recover p and gq.

n = 40763613025504836845249840044831561583564626405535158138667037
18791672670905308860844304055285019651507728831663677166092475
16155419756121537288444995708421977847213953345126368990185271
10259760189356588305406519080647582874212687596214191915933827
67252094717222418132289251314647500491996323400002019,

51



h = 78307999278336577586961528110240026923828914927526911949501196
64549497756373569985393554661132717198368717093111812566649031
17342818449633588647098544612151278035131454234786653136500887
08830470996542888912418213532073622903727205396807848603735835
72653630883685906916701587362236649126895719656663293825501223
97088799629252601249428062432254738935764304610281613264225641
74990272864680012560095992125783832230234589257650929348364268
48117494065463529201859600747521892957258104033195441014023432
36581529201392185327635674923459290749241831590661903965132514
2154451518308886658505820006667836934411881.

2.12.2 Solution

This problem is based on a (simplified) variation of the Coppersmith method.
Let m = n? + 8 -2019. It is a composite number with unknown factors. The idea is to find an
integer a such that numbers

— . 32019

ay mod m, and

— . 52019

as mod m

are small enough and a1p? + a2q® exceeds the modulus m by a small amount and can be recovered
from a - h mod m. This can be done using the Lagrange-Gauss algorithm (which is a special case
and the building block of the LLL algorithm). Let A be the lattice spanned by the two vectors

v = (1, (52019 ) (32019)71 mod m)),
Vg = (0, m)

Consider an arbitrary vector v = (a1, a2) in this lattice. It is easy to verify that
arp® + asq® = ap - h- (31971 (mod m).

The lattice reduction guarantees to find such vector v with the norm

loll = /a3 + a3 < 26D/ (det AY/4 = \/im/ V2,
where d = 2 is the dimension of the lattice. In particular,
la1p® + a2q?| < n(p* + ¢*) < n(p+ ¢)* < 10n?,

where the last two inequalities follow from balancedness of the primes (i.e., max(p, ¢) < 2min(p, q)).
It follows that there exists an integer z,|z| < 10, such that

ar-h- (32019)*1 mod m + zm = a1p® + azq®.

As a result, we obtain an equation in p? and ¢2. By replacing p = n/q, we obtain a biquadratic
equation in g which is easy to solve and factor n.
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The final solution is:

p = 20190000758781541816811298104144770223468182091751945248792088
90921501144547048007953722271285690350264116081579241189587393
202602664199899594021414383,

g = 20190000739734941945213398056820939591822657460839955948263937
53631669289175827851666668014167119439386543289850940734885806
826120718179729242641026893.

The best solution was proposed by Alexey Zelenetskiy, Mikhail Kudinov, and Denis Nabokov
team (Russia, Bauman Moscow State Technical University).

2.13 Problem “TwinPeaks3” (online)
2.13.1 Formulation

As Bob’s previous cipher TwinPeaks2 (NSUCRYPTO-2018) was broken again, he finally decided
to read some books on cryptography. His new cipher is now inspired by practical ciphers, while the
number of rounds was reduced a bit for better performance.

Not only the best techniques were adopted by Bob, but also he decided to enhance his cipher
by security through obscurity, so the round functions are now unknown. The only thing known
about these functions is that they are the same for odd and even rounds.

New Bob’s cipher works as follows. A message X is represented as a binary word of length 128.
It is divided into four 32-bit words a, b, ¢, d and then the following round transformation is applied
32 times:

(a,b,c,d) < (b,c,d,a® (F;(b,c,d)))
F; = F} for odd rounds and F; = F5 for the rest.

Here F7 and F5 are secret functions accepting three 32-bit words and returning one word; and @
is the binary bitwise XOR. The concatenation of the final a, b, ¢, d is the resulting ciphertext Y for
the message X.

Agent Cooper again wants to read Bob’s messages. He caught the ciphertext

Y = e473£19a247429ab33b66268d57dd241

(the ciphertext is given in hexadecimal notation, the first byte is e4).
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He was also able to gain access to Bob’s testing server with encryption and decryption routines,
using the secret key. Here it is [17]. Unfortunately, the version of software available on this server
is not final. So, the decryption routine is incomplete and only uses keys in the reverse order, which
is not sufficient for decryption:

(a,b,c,d) < (b,c,d,a® (F;(b,c,d)))
F; = F5 for odd rounds and F; = Fj for the rest.

The server can also process multiple blocks of text at a time: they will be processed one-by-one and
then concatenated, as in the regular ECB cipher mode of operation. Ciphertexts and plaintexts
are given and processed by the server in hexadecimal notation.

Help Cooper to decrypt Y.
2.13.2 Solution

Let f; be the round transformation of round i:
fir (a,b,¢,d) < (b,e,d,a @ (Fp)(b, ¢, d))),

where k(i) = 1 for odd i and k(i) = 2 for the rest.
Hence, we can represent the encryption transformation F as

E = (fi1f2)'°.

Let I be the incomplete decryption transformation described in the problem statement. The
encryption and the incomplete decryption processes only differ in key order, so I can be written in
terms of f;:

I= (f2f1)16~

The decryption transformation E~! can be represented as
B = (D"
where fi_1 is the inverse of f; and is given by the following transformation:
fz-_1 : (a,b,¢,d) < (d® (Fypy(a, b,¢)),a,b,c)

Thus, to apply E~! to the ciphertext one should be able to compute Fi(z,vy,2) and Fy(z,y, 2)
that are secret. To recover these functions a slide attack can be used.

The idea is to find words x = (21, x2,z3,z4) and y = (y1, Y2, y3, y4) such that f;(z) = y. If such
a pair is found, then F; can be found as

E($2,$3,IE4) = VY4 ©® xq.

We use the following idea to find a desired pair: if Ef;(x) = E(y), then f;(x) = y. Let us start
with F7. We need a pair of x and y such that Efi(x) = E(y). This relation can be written as

(frf2)' fi(x) = (f1f2)"(y)
fi(f2/1)'0(x) = (f1f2)"5(y)
fil(x) = E(y)
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We come to a conclusion that if fiI(x) = E(y), then fi(x) = y. The condition f1I(z) = Ey
can be checked by using the definition of fi: if (I(x))2 = (E(y))1, (I(x))s = (E(y))2 and (I(x))4 =
(E(y))s, then it is likely that f1I(x) = E(y). The probability of false positives is approximately
279 for random Fj functions. So, it can be considered as negligible. Both I(x) and E(y) are
available on the encryption oracle for arbitrary x and y as the incomplete decryption and the
encryption routines respectively.

To find Fj(a,b,c), let us brute force over x and y of the following forms: = = (X, a,b,c) and
y = (a,b,c, X"). According to the birthday paradox, a desired pair can be found in 2%2'6 operations
average (instead of 232 if we lock X or X’ to some constant value).

As soon as we find such a pair z and y, we can compute Fj(a,b,c) and apply ffl to the
ciphertext and decrypt the last round. Then F5 can be found the same way by replacing I and
E with each other due to the symmetry. By doing this round by round, we decrypt the whole
ciphertext and get the desired message (in hexadecimal notation)

acherrypieplease

The reference implementation of this attack requires 222 blocks of text to be encrypted and 10

minutes of time average. It is important to use the server’s ability to process multiple blocks of
text at a time to minimize the amount of HI'TP requests.
Four teams successfully solved the problem using the same method.

2.14 Problem “Curl27”
2.14.1 Formulation

Bob is developing the 30TA infrastructure and has designed a new hash function Curl27 for it. A
distinguishing feature of the infrastructure is the ternary logic: trits from the set T = {0,1,—1}
are used instead of bits, ternary strings and words are used instead of binary ones. The Curl27
hash function is defined below. Its implementation in Java can be found in [18].

Find a collision for Curl27, that is, different ternary strings X and X’ such that Curl27(X) =
Curl27(X"). Submit colliding strings as two lines of trits separated by commas. An example of a
(wrong!) solution is:

-1,1,0,1,1,0
-1,-1,1,0,1,1,-1,0

Description of Curl27. The Curl27 function maps a ternary string X of arbitrary length to a
hash value from T2%3. When hashing, an auxiliary sponge function Curl27-f: T — T is used.
The hashing algorithm:

1. Pad X with zeros to make its length a multiple of 243. Divide the resulting string into blocks
X1, X0, ..., X, €T,

2. Prepare the state W = WoW Wy € T™ consisting of words W; € T?*3. Initialize the state
by filling Wy and Wy with zeros and W; with the encoded initial (before padding) length
of X. The length is encoded by a ternary word according to the little-endian conventions:
less significant trits go first. For example, the length 25 = 1 — 3! + 33 is presented by the
word 1101000...0. Here 1 stands for —1.

243

3. Fori=1,2,...,d, do: Wy < X;, W <« Curl27-f(WW).
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4. Return Wy.
Description of Curl27-f. In Curl27-f the S-box

S: T3 = T3 (a,b,c)— (Fla,b,c),F(b,c,a), F(c,a,b))
is used. Here

F(a,b,c) = a®b’c + a®*bc? — ab*c® + a®b? — a’be + a*c® + ab’c

—adlc+ab® —ac? + b c+b —a? - +bc— 2 —c+1,

where the calculations are carried out modulo 3 while the residue 2 is represented by the trit —1.

To transform the state W, 27 rounds are performed. A round consists of 6 steps. At each
step triplets of trits of W are grouped in a certain way. Then each triplet (a, b, c) is replaced with
S(a,b,c).

Groupings are organized as follows (see the picture below). At the first step, the state is divided
into 3 words of 243 trits. Trits of these words in the same positions are grouped. In the second
step, the state is divided into 9 words of 81 trits. Trits of the 1st, 2nd and 3rd words in the same
positions are grouped, then trits of the 4th, 5th and 6th words, and so on. After that, the state
is divided into words of length 27, then length 9, then length 3 while maintaining the logic of
groupings. In the last sixth step, consecutive triplets of trits are grouped.

Bonus problem (extra scores, a special prize!). Find a collision when the state is initialized
in a different way: now Wy, W5 are not filled with zeros, the word 011011 ...011 is written in each
—_—

243
of them instead.

4[] VNN | | (ST [ [
5 NERRENERRECRECRECEE
6 ([ [T [ T TS T T T

Groupings (3 last steps, grouped trits are painted the same color)

2.14.2 Solution

For a word u in the alphabet T, let ™ be the word of m copies of u. Supposing v = uguy ... un—1
denote ul™ = uZur ... u . We call a word of the form ul™ m-fragmented.

Theorem. Let m be a power of 3, m < 729. The sponge function Curl27-f preserves m-
fragmentation, that is, if W is m-fragmented, then Curl27-f(1¥) is also m-fragmented.

Proof. At the ith step of the Curl27-f round function, the state W is divided into words of length
n=235"%4i=1,2,...,6. For n < m the step function preserves equality of trits inside fragments.
It follows from the fact that S(a,a,a) = (b,b,b). For n > m equality is also preserved since in each
fragment trits at the different positions are processed in the same way. O
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Let m be a small power of 3 (interesting cases are m = 3,9,27). Consider a ternary string X
of length
14+3+3%+...+3" =3 -1)/2

The length is given by a word of m ones. Consequently, the initial state of Curl27 when processing X
is m-fragmented (one fragment of ones, the remaining fragments of zeros).

Let us choose trits of X so as to preserve m-fragmentation of the state during hashing. This
is easy to do using Theorem: each full m-fragment of X must have the form o™, a € T, and, in
addition, trits of the last (incomplete) fragment must be zero to be consistent with the padding
trits. Having achieved m-fragmentation of states, we automatically obtain m-fragmentation of hash
values. Now a hash value is determined by 243/m trits, each of which is repeated m times. We can
find a collision for Curl27 after processing of about Vv 3243/™ strings X of the described structure,

that is, in time of order
3m . A /3243/m — 3m+121.5/m'

The minimum of the function above is achieved at m = 9. During the attack with m =9 it is
required to process approximately v 313-5 strings of 9841 = 243 - 40 + 121 trits each.
An example of colliding messages:

X = 02*%%9(101100110101111100101100000)0*2*,
X' = 0%%339(000011110100111111001000000) 02!,

This collision was found by Jeremy Jean (National Cybersecurity Agency of France), the only
participant who solved the problem.

The preservation of fragmentation is an invariant of Curl27-f which allows to decrease the di-
mension and thereby effectively solve the basic problem. To solve the bonus problem, Jeremy
Jean proposed to use another invariant for Curl27-f: if each part Wy, W7, Wy of the state W is
3-expanded, then this fact also holds for Curl27-f(W). Here we call a word U € T?*3 3-expanded if
it has the form (abc)®!, abc € T3,

In the initial state, the parts W and W5 are indeed 3-expanded. To comply with the invariant,
the part Wj representing the length of a hashed string X must have one of the forms (ab1)%!, (a10)3!
or (100)8! (the length is nonzero and positive). As a result, X consists of at least 14+27+...427%0 >
3210 trits.

It is easy to maintain the invariant during hashing: full 243-fragments of X must be 3-expanded
and the last incomplete fragment (if it exists) must be filled with zeros. The resulting hash values are
3-expanded, there are only 27 choices for them and a collision will surely be found after processing
only 28 strings X. Of course, the attack is impractical: the time of order 3240, which is required
only for recording colliding messages, is unacceptably large even compared to the time 3243/2 of the
standard birthday attack.

2.15 Problem “8-bit S-box”
2.15.1 Formulation

Permutations S of the set {0,1}" or F} are usually called n-bit S-boxes. We will focus on the
following cryptographic properties of S-boxes:

1. The (minimal) algebraic degree of S, denoted by deg(S), is the minimum of algebraic
degrees of all component functions of S.
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2. The nonlinearity of S, denoted by nl(S), is the minimal Hamming distance between all
component functions of S and the set of all affine functions.

3. The differential uniformity of S, denoted by du(.S) is the maximal number of solutions of
the equation S(z) @ S(x ® ) = B for any nonzero vector o and any vector [3.

4. The (graph) algebraic immunity of S, denoted by ai(S), is the minimal algebraic degree
of all nonzero Boolean functions f in 2n variables such that f(z,y) = 0 for any = € F§ and

y=S(x).

In modern symmetric cryptography, S-boxes of dimension n = 8 are probably the most popular.
For example, such an S-box is used in the AES block cipher. The characteristics of Sags:

(deg,nl, du, ai)(Sags) = (7,112,4,2).

The value ai(Sagps) = 2 means that Sags (and the whole AES) can be compactly described by
quadratic equations. This can be a weakness in the context of algebraic attacks.

Imposing the restrictions (deg, ai)(S) = (7,3) (optimal values), we need to maximize nl(S) and
minimize du(S). The current best result [7, 8] is

(deg, nl, du, ai)(S) = (7,108, 6, 3).

Problem for a special prize! You need to improve this result: find 8-bit S with nl(S) > 108
and/or du(S) < 6 while preserving deg(S) = 7 and ai(S) = 3.

Remarks. Let us recall relevant definitions.

1. A Boolean function f : Fy — [F3 can be uniquely represented in the algebraic normal form
(ANF) in the following way: f(z) = @ ep(w) ar([1;e; %), where P(N) is the power set of
N ={1,...,n} and ay € Fo.

2. The algebraic degree of F is degree of its ANF: deg(F) = max{|I|: a; #0, I € P(N)}.

Boolean functions of the algebraic degree not more than 1 are called affine.

4. The Hamming distance between Boolean functions f and ¢ is the number of vectors x € Fy
such that f(z) # g(x).

5. A function S : Fy} — F5 can be given as S = (s1,...,sy), where s; is a Boolean function; a
nontrivial linear combination of sq,..., s, is a component function of S.

&

2.15.2 Solution

There were no valuable ideas from the Olympiad participants. The problem remains unsolved for
the considered configuration of cryptographic properties. There exist several dozen of constructions,
based on well-known butterfly structure, that provide current record (7,108,6,3), see [7, 8]. This
leads to the idea that if candidates for improvement exist, then they are likely outside the known
structures and constructions of cryptographic permutations.

2.16 Problem “Conjecture”

2.16.1 Formulation

Let Fo be the finite field with two elements and n be any positive integer larger than or equal
to 3. Let f(X) be an irreducible polynomial of degree n over Fy. It is known that the set of the
equivalence classes 3 of polynomials over Fo modulo f(X) is a finite field of order 2", that we shall
denote by Fon. It is known that different choices of the irreducible polynomial give automorphic
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finite fields and such choice has then no incidence on the algebraic problems on the corresponding
fields.
Problem for a special prize! Prove or disprove the following

Conjecture. Let k be co-prime with n. For every 8 € Fon, let F(8) = B4k_2k+1. Let A =
{F(B)+ F(B+1)+1; g €Fan}. For every distinct nonzero vy, vy in Fan, we have

’{(xa Y, Z) € AB; V1T + VY + (vl + U?)Z = O}‘ - 22”73'

Example for n = 3: we can take f(X) = X3 + X + 1, then each element 3 of the field Fys
can be written as a polynomial of degree at most 2: ag + a1 X + a2 X?, with ag,a1,as € Fo. The
element O corresponds to the null polynomial; and the unity, denoted by 1, corresponds to the
constant polynomial 1. We can calculate the table of multiplication in Fys (the table of addition
just corresponds to adding polynomials of degree at most 2); this allows calculating any power of
any element of the field and check the property.

2.16.2 Solution

This mathematical problem is open and difficult. It was presented in [5] for the first time and
discussed in [6]. The conjecture was verified for small n (odd values n < 11, even values n < 8).
The Olympiad participants suggested several ideas. Unfortunately, none of them gave significant
advances to prove a conjecture or search for a counterexample. The team of Kristina Geut, Sergey
Titov, and Dmitry Ananichev (Ural State University of Railway Transport) and the team of Alexey
Zelenetskiy, Mikhail Kudinov, and Denis Nabokov (Bauman Moscow State Technical University)
proved the conjecture for a particular case £k = 1. Nevertheless, this case is peculiar since the
function is then quadratic and the result is known for quadratic functions. The proofs cannot be
generalized to the common case.

3 Winners of the Olympiad

Here we list information about the winners of NSUCRYPTO’2019 in Tables 9,10,11,12,13.

Table 9: Winners of the first round in school section A (“School Student”)

Place ‘ Name ‘ Country, City ‘ School ‘ Scores ‘
1 Borislav Kirilov Bulgaria, Sofia The First Private Mathematical Gymnasium 16
1 Alexey Lvov Russia, Novosibirsk | Gymnasium 6 16
2 Lenart Bucar Slovenia, Ljubljana Gymnasium Bezigrad 15
3 Varvara Lebedinskaya | Russia, Novosibirsk | The Specialized Educational Scientific Center of 14
Novosibirsk State University
3 Gabriel Ericson Sweden, Orebro Tullangsskolan 14
Diploma | Vlad Coneschi Romania, Slatina Radu Greceanu National College 11
Diploma | Wang Duanyu Singapore, Singapore | New Town Primary School 9
Diploma | Vlad Ratnikov Russia, Yaroslavl School 33 of Yaroslavl 9
Diploma | Nikita Kukin Russia, Moscow Gymnasium 1540 of Moscow 8
Diploma | Michail Kostochka Russia, Novosibirsk Lyceum 130 8
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Table 10: Winners of the first round, section B (in the category “University Student”)

’ Place ‘Name ‘Country, City ‘University ‘Scores‘
1 Maxim Plushkin Russia, Moscow Lomonosov Moscow State University 22
1 Mikhail Kudinov Russia, Moscow Bauman Moscow State Technical University 21
2 Narendra Patel India, Roorkee Indian Institute of Technology Roorkee 19
2 Vladimir Schavelev |Russia, Saint Petersburg Saint Petersburg State University 19
3 Thanh Nguyen Van |Vietnam, Ho Chi Minh City |Ho Chi Minh City University of Technology 16
3 Daria Grebenchuk |Russia, Yaroslavl Yaroslavl State University 16
3 Roman Gibadulin Russia, Yaroslavl Yaroslavl State University 16
3 Tuong Nguyen Vietnam, Ho Chi Minh City |Ho Chi Minh City University of Technology 15
Diploma | Denis Nabokov Russia, Moscow Bauman Moscow State Technical University 14
Diploma |Filip Dashtevski Macedonia, Kumanovo TU Delft 14
Diploma |Sayooj Samuel India, Kollam Amrita University 14
Diploma | Paul Cotan Romania, Iasi Alexandru Ioan Cuza University 13
Diploma | Karina Kruglik Belarus, Minsk Belarusian State University 13
Diploma | Hosein Hadipour Iran, Tehran University of Tehran 13
Diploma | Polina Raspopova Russia, Yekaterinburg Ural State University of Railway Transport 12
Diploma | Gorazd Dimitrov Macedonia, Skopje Ecole Polytechnique 12
Diploma |Diana Bespechnaya |Russia, Moscow Bauman Moscow State Technical University 12
Diploma | Nikolay Prudkovskiy | Russia, Moscow Bauman Moscow State Technical University 12
Diploma |Riccardo Zanotto Italy, Pisa University of Pisa 12
Diploma | Dmitry Zakharov Russia, Moscow National Research Nuclear University MEPhI| 12

Table 11: Winners of the first round, section B (in the category “Professional”)

’ Place ‘ Name ‘ Country, City ‘ Organization ‘ Scores ‘
1 Henning Seidler Germany, Berlin TU Berlin 26
2 Samuel Tang Hong Kong, Hong Kong | Black Bauhinia 20
2 Madalina Bolboceanu | Romania, Bucharest Bitdefender 20
3 Irina Slonkina Russia, Moscow National Research Nuclear University MEPhI | 16
Diploma | Harry Lee Hong Kong, Hong Kong | Blocksquare Limited 14
Diploma | Alexey Chilikov Russia, Moscow Bauman Moscow State Technical University 14
Diploma | Victoria Vlasova Russia, Moscow Bauman Moscow State Technical University 14
Diploma | Darko Ninkovic Serbia, Belgrade University of Belgrade 13
Diploma | Dheeraj M Pai India, Chennai Hyperweb Media Private Limited 13
Diploma | Dmitry Ananichev Russia, Yekaterinburg | Ural Federal University 13
Diploma | Ekaterina Kulikova Germany, Munich 13
Diploma | George Teseleanu Romania, Bucharest Institute of Mathematics of the Romanian| 12
Academy
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Table 12: Winners of the second round (in the category “University student”)

’ Place ‘Name ‘Country, City ‘University ‘Scores‘
1 Alexey Zelenetskiy, Mikhail Russia, Moscow Bauman Moscow State Technical 51
Kudinov, Denis Nabokov University
2 Ngoc Ky Nguyen, Dung Truong, |Vietnam, Ho Chi Minh|Ho Chi Minh City University of 43
Phuoc Nguyen Ho Minh City; France, Paris Technology, Ecole Normale Superieure
2 Thanh Nguyen Van, Quoc Bao Vietnam, Ho Chi Minh City University of 40
Nguyen, Ngan Nguyen Ho Chi Minh City Technology
3 Maxim Plushkin Russia, Moscow Lomonosov Moscow State University 34
Ilya Trusevich, Maxim Bibik, Belarus, Minsk Belarusian State University 38
Alexander Shulga
Diploma | Paul Cotan, Romania, lagi Alexandru Toan Cuza University 26
Evgnosia-Alexandra Kelesidis
Diploma|Roman Sychev, Diana Russia, Moscow Bauman Moscow State Technical 24
Bespechnaya, Nikolay Prudkovskiy University
Diploma | Vladimir Paprotski, Dmitry Belarus, Minsk Belarusian State University 21
Zarembo, Karina Kruglik
Diploma | Vitaliy Cherkashin, Zoya Russia, Novosibirsk Novosibirsk State Pedagogical University | 18
Tabikhanova, Evgenia Bykova
Table 13: Winners of the second round (in the category “Professional”)
’ Place ‘Names ‘ Country, City ‘Organization ‘Scores‘
1 Irina Slonkina, Mikhail Sorokin, |Russia, Moscow Bauman Moscow State Technical 48
Vladimir Bobrov University
1 Kristina Geut, Sergey Titov, Russia, Ural State University of Railway 46
Dmitry Ananichev Yekaterinburg Transport, Ural Federal University
Henning Seidler, Katja Stumpp |Germany, Berlin Berlin Technical University 42
Victoria Vlasova, Mikhail Russia, Moscow Bauman Moscow State Technical 37
Polyakov, Alexey Chilikov University
3 Duc Tri Nguyen, Quan Doan, Vietnam, Cryptographic Engineering Research Group,| 36
Tuong Nguyen Ho Chi Minh City |pwnphofun, Ho Chi Minh City University of
Technology
3 Madalina Bolboceanu, Romania, Bitdefender, Alexandru Ioan Cuza 34
Andrei Mogage, Radu Titiu Bucharest University
Diploma | Elena Kirshanova, Semyon Russia, Kaliningrad | Immanuel Kant Baltic Federal University 28
Novoselov, Nikita Kolesnikov
Diploma | Vyacheslav Salmanov, Evgeniya |Russia, Taganrog Southern Federal University 22
Ishchukova, Nikita Kutovoy
Diploma | Jeremy Jean France, Paris National Cybersecurity Agency of France 20
Diploma | Khai Hanh Tang, Pham Phuong, | Singapore, Nanyang Technological University 21
Yi Tu Singapore
Diploma | Harry Lee, Samuel Tang Hong Kong, Black Bauhinia 20
Hong Kong
Diploma | Danh Nam Tran, Thu Hien Chu | Vietnam, Ho Chi Minh City Pedagogical University,| 20

Thi, Phu Nghia Nguyen

Ho Chi Minh City

Japan Advanced Institute of Science and
Technology, Ho Chi Minh City University of
Technology

61



References

[1] Agievich S., Gorodilova A., Idrisova V., Kolomeec N., Shushuev G., Tokareva N. Mathematical
problems of the second international student’s Olympiad in cryptography. Cryptologia. 2017,
V.41, No. 6, pp. 534-565.

[2] Agievich S., Gorodilova A., Kolomeec N., Nikova S., Preneel B., Rijmen V., Shushuev G.,
Tokareva N., Vitkup V. Problems, solutions and experience of the first international student’s
Olympiad in cryptography. Prikladnaya Diskretnaya Matematika (Applied Discrete Mathemat-
ics). 2015, No. 3, pp. 41-62.

[3] Brinkmann M., Leander G. On the classification of APN functions up to dimension five. Designs,
codes and cryptography. 2008, V.49, pp. 273-288.

[4] De Canni‘ere C. “Analysis and Design of Symmetric Encrytption Algorithms,” Ph.D. thesis,
2007.

[5] Carlet C. Componentwise APNness, Walsh uniformity of APN functions, and cyclic-additive
difference sets. Finite Fields and Their Applications. 2018, V.53, pp. 226-253.

[6] Carlet C. On APN exponents, characterizations of differentially uniform functions by the Walsh
transform, and related cyclic-difference-set-like structures. Proceedings of WCC 2017. Designs,
Codes and Cryptography (Postproceedings of WCC 2017). V.87 (2), pp.203—224, 2018.

[7] de la Cruz Jiménez R. A. Generation of 8-Bit S-Boxes Having Almost Optimal Cryptographic
Properties Using Smaller 4-Bit S-Boxes and Finite Field Multiplication. In: Lange T., Dunkel-
man O. (eds) Progress in Cryptology — LATINCRYPT 2017. LNCS, 2019, V. 11368, pp. 191-206.

[8] Fomin D. B. New classes of 8-bit permutations based on a butterfly structure. Math. vopr.
kript. 2019, V.10(2), pp. 169-180. https://ctcrypt.ru/files/files/2018/09_Fomin.pdf.

[9] Geut K., Kirienko K., Sadkov P., Taskin R., Titov S. On explicit constructions for solving the
problem “A secret sharing”. Prikladnaya Diskretnaya Matematika. Prilozhenie. 2017, No. 10,
pp. 68-70 (in Russian).

[10] Gorodilova A., Agievich S., Carlet C., Gorkunov E., Idrisova V., Kolomeec N., Kutsenko A.,
Nikova S., Oblaukhov A., Picek S., Preneel B., Rijmen V., Tokareva N. Problems and solutions
of the Fourth International Students Olympiad in Cryptography (NSUCRYPTO). Cryptologia.
2019, V.43, 1.2, pp. 138-174.

[11] Gorodilova A., Agievich S., Carlet C., Hou X., Idrisova V., Kolomeec N., Kutsenko A., Mar-
iot L., Oblaukhov A., Picek S., Preneel B., Rosie R., Tokareva N. The Fifth International
Students’ Olympiad in Cryptography - NSUCRYPTO: problems and their solutions. Cryptolo-
gia. 2020, V.44, 1.3, pp. 223-256.

[12] Lewand R. E. Cryptological Mathematics, MAA, Washington, 2000.

[13] Schneier B. Applied Cryptography: Protocols, Algorithms and Source Code in C. Wiley; 2nd
edition, 1996.

[14] Tokareva N., Gorodilova A., Agievich S., Idrisova V., Kolomeec N., Kutsenko A.,
Oblaukhov A., Shushuev G. Mathematical methods in solutions of the problems from the Third
International Students’ Olympiad in Cryptography. Prikladnaya Diskretnaya Matematika (Ap-
plied Discrete Mathematics). 2018, No. 40, pp. 34-58.

62


https://ctcrypt.ru/files/files/2018/09_Fomin.pdf

[15] https://nsucrypto.nsu.ru/

[16] https://nsucrypto.nsu.ru/unsolved-problems/

[17] https://nsucrypto.nsu.ru/archive/2019/round/2/task/4/

[18] https://nsucrypto.nsu.ru/media/0lympiads/2019/Round_2/Tasks/curl27. java

[19] Find Words Using Pattern Matching, in Litscape.com. Available at http://www.litscape.
com/word_tools/pattern_match.php.

[20] Letter Frequency, in Wikipedia. Available at https://en.wikipedia.org/wiki/Letter_
frequency.

[21] https://www.ibm.com/blogs/research/2018/01/quantum-prizes/


https://nsucrypto.nsu.ru/
https://nsucrypto.nsu.ru/unsolved-problems/
https://nsucrypto.nsu.ru/archive/2019/round/2/task/4/
https://nsucrypto.nsu.ru/media/Olympiads/2019/Round_2/Tasks/curl27.java
http://www.litscape.com/word_tools/pattern_match.php
http://www.litscape.com/word_tools/pattern_match.php
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://www.ibm.com/blogs/research/2018/01/quantum-prizes/

Metrical properties of the set of bent functions in view of duality *

Aleksandr Kutsenko!?, Natalia Tokareva!

!Sobolev Institute of Mathematics, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia

Email: alexandrkutsenko@bk.ru, tokareva@math.nsc.ru

Abstract

In this work we give a review of metrical properties of the entire set of bent functions
and its significant subclasses of self-dual and anti-self-dual bent functions. We give results
for iterative contruction of bent functions in n + 2 variables based on the concatenation
of four bent functions and consider related open problem proposed by one of the authors.
Criterion of self-duality of such functions is discussed. It is explored that the pair of sets
of bent functions and affine functions as well as a pair of sets of self-dual and anti-self-dual
bent functions in n > 4 variables is a pair of mutually maximally distant sets that implies
metrical duality. Groups of automorphisms of the sets of bent functions and (anti-)self-dual
bent functions are discussed. The solution to the problem of preserving bentness and the
Hamming distance between bent function and its dual within automorphisms of the set of
all Boolean functions in n variables is considered.

Keywords — Boolean bent function, self-dual bent function, Hamming distance, met-
rical regularity, automorphism group, iterative construction

1 Introduction

How much do we know about some cryptographic objects? One way to measure it is to describe
what we can do with them. Otherwise to characterize groups of automorphisms of these ob-
jects — separately for each object or together while they form some special class. The question
about the group of automorphisms of a set in the Boolean cube necessarily leads us to metrical
properties of this set.

That is why we are very interested in metrical properties of distinct cryptographic Boolean
functions.

The term “bent function” was introduced by Oscar Rothaus in the 1960s [31]. It is known [39],
that at the same time Boolean functions with maximal nonlinearity were also studied in the So-
viet Union. The term minimal function, which is actually a counterpart of a bent function, was
proposed by the Soviet scientists Eliseev and Stepchenkov in 1962.

Bent functions have connections with such combinatorial objects as Hadamard matrices and
difference sets. Since bent functions have maximum Hamming distance to linear structures
and affine functions they deserve attention for practical applications in symmetric cryptogra-
phy, in particular, for block and stream ciphers. We refer to the survey [5] and monographies
of S. Mesnager [26] and N. Tokareva [39] for more information concerning known results and
open problems related to bent functions. Results regarding the study of metrical properties, in
particular, distances between bent functions, one can find in article [17].

*The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1613
with the Ministry of Science and Higher Education of the Russian Federation and Laboratory of Cryptography
JetBrains Research.
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In this paper we give review on metrical properties of the entire class of bent function B,
and its important subclasses — self-dual bent functions SB™(n) (i.e. functions such that f = f)
and anti-self-dual bent functions SB™(n) (i.e. functions such that f & 1 = f), where f is the
dual of f. We suppose that the keys to the nontrivial and important properties of the class of
bent functions are in understanding how does the duality mapping f — f operate with bent

functions. Recall that f~': f for every bent function f. It is important to note that the duality
mapping is the unique known isometric mapping of the bent functions into themselves that can
not be extended to a typical isometry of the whole set of all Boolean functions that preserves
bent functions.

On other hand, the essence of bent functions is expressed in their metrical properties, namely
in maximizing distances between them and affine functions. Note that this very idea in more
general form is realized in the concept of metrical complement and metrically regular sets. Recall
that X is the metrical complement of the set of functions X if it contains all Boolean ftlnctions

that are on the maximal possible distance from X. The set is metrically regular, if X =X.
There is a some similarity to the self-duality of bent functions, is not it?

Our attention is drawn to automorphism groups of the sets By, Ay, SB™(n), SB™(n) and
their metrical properties. Previously, we established that the set of all bent fl/lECtiOIlS B, and

the set of all affine functions A,, form a pair of metrically regular sets, i.e. I/S’; = ;l; = B,.
Now we prove the same fact for the classes of self-dual and anti-self-dual functions: they form

another such pair of metrically complement functions, i.e. SB*(n) = SB™(n) = SBT(n). In both

cases for elements in a pair of metrically regular sets we prove the coincidence of automorphism
groups. Thus, Aut(B,) = Aut (A,) and Aut (SB*(n)) = Aut (SB™(n)). Some other curious
properties of bent functions related to their special constructions are discussed in the paper.

The paper has the following structure: notation and definitions are in the Section 2. In
Section 3 the duality of a bent function is described, including some its important properties
and relevant hypothesis proposed by one of the authors (Section 3.1). Some general and metrical
properties of the set of bent functions which coincide with their duals, namely self-dual bent
functions, are given in Section 3.2. In Section 4 we discuss the iterative construction of bent
function in n + 2 variables based on the concatenation of four bent functions in n variables.
The lower bounds on its cardinality and open problem relevant for the set of bent function are
in Section 4.1. Criterion of self-duality for bent iterative functions and its corollaries for sign
functions together with constructions of self-dual bent functions are discussed in Sections 4.2
and 4.3. In Section 5 the metrical complement of the set of bent functions is studied (Section 5.2)
and the results regarding metrical regularity of the set of bent functions and the set of affine
functions are given. Metrical complement of the set of (anti-)self-dual bent functions is in
Section 5.3. In Section 6 groups of automorphisms of considered sets are studied. The group of
automorphisms of the set of bent functions is characterized in Section 6.3 while the (anti-)self-
dual case is in Section 6.4. In Section 7 we consider some relations between isometric mappings
and the duality of bent function. Isometric mappings which define bijections between the sets of
self-dual and anti-self dual bent functions are described in Section 7.1. The Rayleigh quotient
of a Boolean function and description of isometric mappings that perserve it or change it for
every Boolean function is in Section 7.2. The meaning of the Rayleigh quotient in a scope of
bent functions is discussed as well.

2 Notation

Let F% be a space of binary vectors of length n. Denote, following [13], the orthogonal group of
index n over the field Fy as

O, ={LeGL(n,Fs): LLT = 1I,,},
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where LT denotes the transpose of L and I,, is an identical matrix of order n over the field Fs.
A Boolean function f in n variables is a map from F to Fo. Its sign function is F(z) =
(=1)f®) 2 € F2. We will also refer to a sign function as to a vector from the set {£1}*":

F= (1) = (D (DR () e 1

where (fo, f1,..., fon—1) € IF%" is a truth-table representation of f with arguments given in the
lexicographic order. The set of Boolean functions in n variables is denoted by F,.

The algebraic normal form (ANF, Zhegalkin polynomial) of a Boolean function f € F, is
defined to be o

[z, 20, 2p) = PD Qiyig.in L] TS . Tl
(61,02 ,++yin ) EFR

where a, € Fy for any z € F% (with the convention 0° = 1). The algebraic degree deg(f) of
a Boolean function f is the maximal degree of monomials which occur in its algebraic normal
form with nonzero coefficients.

The Hamming weight wt(x) of the vector x € F3 is the number of nonzero coordinates of x.
The Hamming weight wt(f) of the function f € F,, is the Hamming weight of its vector of values.
The Hamming distance dist(f,g) between Boolean functions f, g in n variables is a cardinality

n
of the set {x € F4 : f(z) ® g(x) = 1}. For z,y € Fy denote (x,y) = € x;y;. Boolean functions

=1
in n variables of the form f(z) = (a,x) ® ag, € Fy, where ag € Fa, a € Fy, are called affine

functions. The set of all affine functions in n variables is denoted by A,,.
The Walsh ”— Hadamard transform (WHT) of a Boolean function f in n variables is an
integer valued function W; : Fy — Z, defined as

Wi(y) = 3 (~1)f@%ew) -y e Fy.
ey

A Boolean function f in an even number n of variables is called bent if
Wy(y)| = 2"

for all y € IF5. The set of all bent functions in n variables is denoted by B,.

3 The dual of a bent function

From the definition of a bent function it follows that for any y € I} we have
Wily) = (-1)/ @2/

for some fve Fn- The Boolean function fdeﬁned above is called the dual function of the bent
function f. Thus, for any bent function in n variables its dual Boolean function is uniquely
defined. The duality of bent functions was introduced by Dillon [11].

3.1 Properties

Some basic known properties of dual functions are the following [3]:
e Every dual function is a bent function;
o If fis dual to f and ]?is dual to f, then ]?: I

e The mapping f — ]? which acts on the set of bent functions, preserves the Hamming
distance.
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There is the following connection between the algebraic degrees of a bent function and its
dual [14]:

n/g_de (f)>n/2_deg<f>
Bz deg(f)—l .

Some results obtained for dual functions can be used in proving the results concerning bent
functions, in particular, the connection between ANF coefficients of a bent function and its dual,
see [8]: N

Z f(l') — owt(y) _ on/2-1 + owt(y)—n/2 Z f(x)
Ty rz<yPl

One of the most important problem in bent functions is to find the number of them. A new
approach to this problem was introduced in [35], see Section 4.1, and the following hypothesis
was formulated.

Hypothesis (Tokareva, 2011). Any Boolean function in n variables of degree not more than
n/2 can be represented as the sum of two bent functions in n variables, where n > 2 is an even
number.

The review of partial results regarding this problem and also in favour of the Hypothesis one
can find in [37]. It was also proved in [38] that

Theorem 1 ([38]). A bent function in n > 4 variables can be represented as the sum of two
bent functions in n variables if and only if its dual bent function does.

So, it follows that the mentioned Hypothesis with the decomposition problem, see Section 4.1,
can not be considered separately for a bent function and its dual.

It is worth noting that this Hypothesis is a counterpart of the Goldbach’s conjecture in
number theory unsolved since 1742: any even number n > 4 can be represented as the sum of
two prime numbers.

Isometric mappings of the set of all Boolean functions in n variables to itself which preserve
bentness and the Hamming distance between every bent function and its dual were characterized
in [20], namely it was proved that

Theorem 2 ([20]). An isometric mapping ¢ of the set of all Boolean functions in n variables
into itself preserves bentness and the Hamming distance between every bent function and its dual
if and only if ¢ has form

flx) — f(L(z®c) ®(c,x)Dd, x5, (1)

for some L € O, c € Fy, wt(c) is even, d € Fs.

3.2 Self-duality

If a bent function f coincides with its dual it is said to be self-dual, that is f = f A bent function
which coincides with the negation of its dual is called an anti-self-dual, that is f = fv@ 1. The
set of (anti-)self-dual bent functions in n variables, according to [15], is denoted by SB™(n)
(SB~(n)).

Self-dual bent functions were explored in paper of C. Carlet et al. [4] in 2010, where some
properties and constructions were given. All equivalence classes of self-dual bent functions
in 2, 4, and 6 variables and all quadratic self-dual bent functions in 8 variables with respect
to a restricted form of an affine transformation (1), which preserves self”=duality, were also
presented. Further, equivalence classes of cubic self-dual bent functions in 8 variables with
respect to the mentioned above restricted form of affine transformation one can find in [12].
In [15], a classification of quadratic self-dual bent functions was obtained. The upper bound
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for the cardinality of the set of self-dual bent functions was given in [16]. In [21, 25] one can
find new constructions of self-dual bent functions. A connection of quaternary self-dual bent
functions and self-dual bent Boolean functions was shown in [32]. In [19] it was proved that for
any d € {2,3,...,n/2} there exists a self-dual bent function of algebraic degree d.

In papers [18, 19, 20] metrical properties of the sets of (anti-)self-dual bent functions in n vari-
ables were studied. Below we briefly discuss some of them.

Recall that bent functions in 2k variables which have a representation

f(z,y) = (x,7(y)) ® g(y), =,y €FS,

where 7 : F§ — F% is a permutation and g is a Boolean function in k variables, form the well
known Maiorana-McFarland class of bent functions [24]. Let the denotion SB},(n) stands for
the set of self-dual Maiorana-McFarland bent functions and SB)(n) for the set of anti-self-
dual ones both in n variables. Necessary and sufficient conditions of (anti-)self-duality of bent
functions from Maiorana—McFarland class are known from [4], namely a Maiorana—McFarland
bent function f(x,y) € Foy is self-dual bent if and only if

m(y)=Ly®c), g(y)=(cy)ed yeTFs,

where L € Oy, ¢ € F§, wt(c) is even, d € F3. Note that [SB},(2k)| = 2% - |Ok|. In [18] the set
of possible Hamming distance between such self-dual bent functions was found,

Theorem 3 ([18]). Let n >4 and f,g € SB},(n) USB}(n), then

1
dist(f, g) € {2”1,2"1 (1 + 2> ,r=0,1,..,n/2 — 1} .
Moreover, if either f, g € SBL(n) or f,g € SB)((n), then all distances except 271 are attain-
able, and for any pair f € SBL (n) and g € SB((n) it holds dist(f,g) = on—1,

By analysis of the set of distances from Theorem 3 the minimal Hamming distance between
considered functions can be obtained:

Corollary 1. The minimal Hamming distance between (anti-)self-dual Maiorana—McFarland
bent functions in n > 4 variables is equal to 272,

Moreover, since the minimal Hamming distance between quadratic Boolean functions in
n variables (which correspond to codewords of the RM(2,n) code) is at least 272 [22], the
following fact holds

Corollary 2. If n > 4, then the minimal Hamming distance between quadratic bent functions
can be attained on (anti-)self-dual Maiorana—McFarland bent functions.

It is known that the minimal Hamming distance between bent functions in n variables is
27/2 [17]. In [19] it was proved that this extremal value can be attained on (anti-)self-dual bent
functions.

Theorem 4 ([19]). Let n > 4, then the minimal Hamming distance between distinct (anti-)self-
dual bent functions in n variables is equal to 2"/2.

4 Tterative construction BZ

Let fo, f1, fo, f3 be Boolean functions in n variables. Consider a Boolean function ¢ in n + 2
variables which is defined as

9(00737):.]00(‘7:)7 g(Ol,ZE):fl((E), g(lovx):fQ(x)a 9(117x):f3(33)7 xE]FSL'
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It is known (Preneel et al., 1991; see also [1, 35]) that under condition fy, f1, f2, f3 € B, the
mentioned function g is a bent function in n 4 2 variables if and only if

foohofaf=1,

that gives the construction of a bent function in n + 2 variables through the concatenation of
vectors of values of four bent functions in n variables [29].

Following N. Tokareva [35], we will refer to bent functions obtained by this construction as
bent iterative functions (BZ) and denote the set of such bent functions in n variables by BZ,,.

In [6], the comparison of cardinalities of different known iterative constructions of bent
functions in n < 10 variables was presented and the class BZ had the biggest cardinality among
them.

According to [1], there exist bent functions from Maiorana-McFarland class [24] and from
the class PS (Partial Spreads) [11] that can not be represented as bent iterative functions. Also,
from paper [2] on nonnormal bent functions, it follows that there exist bent functions in BZ,
that are nonequivalent to Maiorana—McFarland bent functions.

4.1 Lower bounds on the cardinality and related open problem

In paper [35] some possible ways of how to calculate the number of bent iterative functions were
shown.

Theorem 5 ([35]). For any even n > 4

BIn|= > > |Bu2&f)N(Buae ).
f'€Bn_2 f"€Bn—2

Denote X, = {f @ h : f,h € By} and consider the system {C : f € B,} of its subsets defined

as Cy =B, @ f. So,
X,= U Cy.
febn

Let 1 be an element of X,,. The number of subsets Cy that cover 1, according to [35], is called
multiplicity of ¢ and is denoted by m (¢). One can notice that if ¢ is covered by Cy, then it is
covered by any set C'y/, where f’ is obtained from f by adding an affine function.

In [35], the exact number of bent iterative functions through the multiplicities was obtained.

Theorem 6 ([35]). For any even n > 2

BZni2| = > m?(4).
eCy

So, in order to evaluate |BZ, 2| (and then |B,12|) we have to study the set X, and the
distribution of multiplicities for its elements. Such an analysis, as shown in [35], gives the
following lower bound.

Theorem 7 ([35]). For any even n > 2

|Bn+2|4
| Xl

< [BZntz| < [Bnyal -

Thus, for calculating the exact number of bent iterative functions, one has to study the
structure of the set X,,. So, we come to a new problem statement.

Open problem: bent sum decomposition (Tokareva, 2011). What Boolean functions
can be represented as the sum of two bent functions in n variables? How many such represen-
tations does a Boolean function admit?

The related Hypothesis was previuosly mentioned in the Section 3.1.
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4.2 Self-dual bent iterative functions

The set of (anti-)self-dual bent functions from BZ, is further denoted by SBf;(n) (SBgz(n)).

In paper [19], the necessary and sufficient conditions of self-duality of bent iterative functions
were studied, namely the following result was obtained. Namely, by taking constant function h
one can obtain two constructions of self-dual bent iterative functions in n + 2 variables:

Theorem 8 ([19]). Let g € BZ,+2. Then g is self-dual bent if and only if there exists such pair
of functions g1,92 € By:

91D g2) h® g1 = ga,

h®gs=g1®h,

hdge ®h=7q,

fo=(

fi=1(91® g2

f2=(91® g2
(

)

)

)

e (1@ h®adhdl=gpohdl,

where the function h € F, is uniquely defined by a pair of bent functions g1, g2, namely:
h=g®gq ®g2d 9o

Two iterative constructions of self-dual bent functions immeditely follow from Theorem 8,
as it was shown in [19].

Corollary 3. Functions

I v, ) = (11 9) (F2) @ F(2) & f (@) & yaye,
F (1, y2,2) = (11 @ y2) (p(2) D w(z)) ® () ® aryr S azyz S Y1y,

where
Y1,Y2, 00, a2 € Fo, 00 @ g = 1, € 3,

f € By, €SB (n),we SB™(n),
are self-dual bent functions in n + 2 variables.

The first construction (for f’) was earlier presented in [4] as an example of the construction
which uses the indirect sum of bent functions, see [3]. It is worth noting that the second
construction (for f”) can also be obtained from indirect sum of bent functions.

Since these constructions do not intersect, the sum of their cardinalities provides a lower
bound for the cardinality of the set of self-dual bent iterative functions [19]:

Corollary 4. It holds
1By—a| + |SB (n — 2) < [SB,(n)] < |Baosaf?.

4.3 The dimension of linear span of sign functions of self-dual bent functions

Let H, = H 1®” be the n-fold tensor product of the matrix Hy with itself, where

1 1
Hy = <1 1) |
It is known the Hadamard property of this matrix:
H,HY = 2"I)n.

Denote H,, = 2~"2H,,. In terms of sign functions the function f € F, is bent if for its sign
function F it holds H, F € {+1}%".
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Recall that a non-zero vector v € C" is called an eigenvector of a square n x n matrix A
attached to the eigenvalue A € C if Av = Av. A linear span of eigenvectors attached to the
eigenvalue \ is called an eigenspace associated with A. Consider a linear mapping ¢ : C* — C™
represented by a n x n complex matrix A. A kernel of ¢ is the set

Ker(¢) ={z €C": Ax =0€ C"},

where 0 is a zero element of the space C".

From the definition of self-duality it follows that sign function of any self-dual bent function
is the eigenvector of H, attached to the eigenvalue 1, that is an element from the subspace
Ker (H,, — I2n) = Ker (Hn —on/ 2I2n). The same holds for a sign function of any anti-self-dual
bent function, which obviously is an eigenvector of H,, attached to the eigenvalue (—1), that is
an element from the subspace Ker (H, + Ion) = Ker (H, + 2”/212n).

In [4], an orthogonal decomposition of R?" in eigenspaces of H, was given:

R = Ker (H, + 2L ) @ Ker (Hy — 2210, 2)

where the symbol & denotes a direct sum of subspaces.
It is known that

dim (Ker (Hn 4o/ QIQn)) — dim (Ker (Hn _on/ 212n)) — on-1

where dim(V) is the dimension of the subspace V' C R2". Moreover, from symmetricity of H,, it
follows that the subspaces Ker (Hn —on/ 2]271) and Ker (Hn + on/ 2[2%) are mutually orthogonal.
In [19] it was proved that

Theorem 9 ([19]). If n > 4, then:

e among sign functions of self-dual bent functions in n variables there exists a basis of the

etgenspace of the matriz H,, attached to the eigenvalues 1, that is the subspace Ker (Hn — 2”/212n) ;

e among sign functions of anti-self-dual bent functions in n variables there exists a basis
of the eigenspace of the matrix H, attached to the eigenvalues (—1), that is the sub-
space Ker (Hy, + 2”/2I2n).

It is worth notice that there exists an example of basis which consists of sign functions of self-
dual bent iterative functions provided by two constructions of self-dual bent iterative functions
obtained by Theorem 8. Given the basis for self-dual case, the basis for anti-self-dual case can
be obtained by using one of bijections from Theorem 20.

5 Metrical complement and regularity

In this section, we give results regarding notable metrical property of a subset of Boolean cube
called metrical regularity. The sets of affine Boolean functions and bent functions possess it. The
sets of self-dual and anti-self-dual bent functions in n > 4 variables are also mutually maximally
distant. That implies metrical duality, in some sence, between the considered pairs of subsets
of Boolean functions.

Regarding that, some essential and intriguing questions arise: for instance, are there any pairs
of metrically regular subsets inside the metrically regular set of bent functions in n variables? If
additionally, in order to exclude some trivial cases, we consider only the subsets which include
functions together with their negations, the maximal Hamming distance from the considered sets
is at most 2"~ Are there any pairs of metrically regular subsets with additional mentioned
requirement such that the distance between them is exactly 277!, that is to say they are extremal
in a manner?
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5.1 Definitions

Let X C Fg be an arbitrary set and let y € F5 be an arbitrary vector. Define the distance
between y and X as dist(y, X) = ml)I{l dist(y, ). The mazimal distance from the set X is
TE

d(X) = maxdist(y, X).
yeFy

In coding theory this number is also known as the covering radius of the set X. A vector
z € FY is called mazimally distant from a set X if dist(z, X)) = d(X). The set of all maximally
distant vectors from the set X is called the metrical complement of the set X and denoted by

X. A set X is said to be metrically reqular if X = X. Define, following N. Tokareva [39], a
subset of Boolean functions to be metrically reqular if the set of corresponding vectors of values
is metrically regular.

Sets of functions which have maximum distance from partition set functions were studied
in [33], it was shown that partition set functions defined by some partition are mutually maxi-
mally distant sets. Lower bound on size of the largest metrically regular subset of the Boolean
cube was studied in [28].

5.2 The set of bent functions
Let GA(n) stands for the affine group. It is well-known that

Proposition 1. Any isometric mapping of the form
flx) — f(Az D D) ® (c,x) D d,
where A € GL(n), b,c € Fy, d € Fa, preserves bentness.

In [36] the following theorem was proved:

Theorem 10 ([36]). For each non-affine Boolean function h € F, there exists a bent function
f € By, such that f @ h is not bent.

From Proposition 1 and Theorem 10 it follows that the set of bent functions is closed under
addition of affine Boolean functions only. This fact implies that the affine functions are precisely
all Boolean functions which are at the maximum distance from the class of bent functions.
Namely, in [36] it was shown that

Theorem 11 ([36]). A Boolean function in n variables is

— a bent function if and only if it has the mazimal possible distance on=1 _ on/2=1 4 the set
of all affine functions, that is it is an element of Ay;

— an affine function if and only if it has the mazimal possible distance 21 — 27/2=1 o the
set of all bent functions, that is it is an element of By,.

Thus, from the results given in [36] it follows that there exists a duality, in some sense,
between the definitions of bent functions and affine functions. In particular, we obtain metrical
regularity of the sets of affine functions and bent functions.

Corollary 5.
1. The set A, of all affine Boolean functions in n variables is metrically regular.

2. The set B, of all bent functions in n variables is metrically reqular.
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5.3 The set of (anti-)self-dual bent functions

For any (anti-)self-dual bent function f € SBT(n) its negation f @ 1 is also (anti-)self-dual
bent [4, 12]. Moreover, from the results presented in [20], it follows the counterpart of Theorem 10
for the (anti-)self-dual case, namely:

Theorem 12. For each non-constant Boolean function h € F, there exists a self-dual bent
function f € SBY(n) such that f @ h is not self-dual bent. Anti-self-dual bent functions possess
the same property.

So, it follows that the set of (anti-)self-dual bent functions is closed only under addition of
1, that is, taking the negation of the function.

From the fact that considered set is closed under addition of 1, it follows that the maximal
Hamming distance from the set SBT(n) is at most 2"~!. Tt was proved by Carlet et al. in [4]
that the Hamming distance between any pair of self-dual and anti-self-dual bent functions, both
in n variables, is equal to 2"~ !. So, we have

d(SBT(n)) =271,

and all anti-self-dual bent functions in n variables belong to the metrical complement of the set
of self-dual bent functions in n variables.

In paper [19], the metrical complement of the set of (anti-)self-dual bent functions in n > 4
variables was completely characterized by using the orthogonal decomposition (2) and existence
of the basis provided by the Theorem 9, namely, it was proven that

Theorem 13 ([19]). Let n > 4, then a Boolean function in n variables is:

— self-dual bent if and only if it has the mazimal possible distance 2"~ ' to the set of all

o —

anti-self-dual bent functions, that is, it is an element of SB™(n);

— anti-self-dual bent if and only if it has the mazimal possible distance 2"~ to the set of all

—

self-dual bent functions, that is, it is an element of SB™(n).

As for the pair of the sets of bent functions and affine functions, it follows that there also
exists a duality between the sets of self-dual and anti-self-dual bent functions in n > 4 variables.

The case n = 2 was considered explicitely and it appeared that both SBT(2) and SB™(2) are
metrically regular sets. From that and the Theorem 13 it follows

Corollary 6.
1. The set SBT(n) of all self-dual bent functions in n variables is metrically regular.

2. The set SB™(n) of all anti-self-dual bent functions in n variables is metrically reqular.

6 The group of automorphisms

Study of automorphism groups of mathematical objects deserves attention since these groups
are closely connected with the structure of the objects. There exists a natural question: how
groups of automorphisms of two mathematical objects, one of which is embedded to another
one, are related.

An example of such a problem statement is the set of bent functions in n variables and one
of its significant subclasses which consisits of self-dual bent functions in n variables.

It is also worth mentioning that the complexity of classification of combinatorial objects
depends on generality of the approach. Consequently, the question “if the common approach to
classify (self-dual) bent functions is the most general within automorphisms of the set of Boolean
functions”’, arises naturally.
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6.1 Isometric mappings and automorphism groups

A mapping ¢ of the set of all Boolean functions in n variables to itself is called isometric if it
preserves the Hamming distance between functions, that is,

dist (o (f), ¢(g)) = dist(f, g)

for any f,g € F,. Following [20], denote the set of all isometric mappings of the set of all
Boolean functions in n variables to itself by Z,,.

It is known (A.A. Markov, 1956) that every isometric mapping of all Boolean functions in
n variables to itself has the unique representation of the form

f(x) — f(x(x)) & g(), 3)

where 7 is a permutation on the set 5 and g € F,, [23]. The mapping of this form is denoted
by ¢4 € I,.

The group of automorphisms of a fixed subset M C F,, is the group of isometric mappings
of the set of all Boolean functions in n variables to itself preserving the set M. It is denoted by
Aut (M).

6.2 Matrix representation

For a number k € {0,1,...,2" — 1} denote by vj, € F} its binary representation.

Recall that a square matrix is called monomial (or generalized permutation matriz) if it has
exactly one nonzero entry in each row and each column.

The following one-to-one correspondence between the set Z,, and the set of monomial matrices
of order 2" x 2" with nonzero elements from the set {£1} was used in [20]. In more detail, let
©r,g € I, be an arbitrary isometric mapping. Then for any f € F;, and its sign function

F= (=)0, (-1)/0) (-1t e (1},
the sign function
F— <(_1)f'<vO>, (1)L (_1)f’(V2n_1)> e [+1)2"

of f' = ¢rg(f) € Fn can be expressed as F' = AF, where A is a 2" x 2" monomial matrix,
constructed by the permutation 7 and the function g:

in which in the i-th row a nonzero element (—1)9(Vi=1) is in the j-th column, where (j — 1) is a
number with binary representation 7 (v;_1). So the i-th component of F/ = AF is equal to

(=)' Vi) = (1) Vi) (1)9(vVie1) = (—1)/((viea))@g(vioa)

for any ¢ € {1,2,...,2"}, that is equivalent to

fli@)=f(r(x)@g(x), vecF;
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6.3 The group of automorphisms of the set of bent functions

Some attempts to determine the automorphism group of a given bent function were undertaken
by U. Dempwolff in 2006 [10]. Results were presented in terms of elementary Abelian Hadamard
difference sets (equivalently, bent functions).

A natural question whether there exist isometric mappings of Boolean functions into itself,
distinct from those mentioned in Proposition 1, which preserve the class of bent function, was
completely solved in paper [34]. It was proved that there were no other mappings possessing such
a property. Namely, by using the Theorem 11 in view of the duality, the following coincidence
was shown.

Theorem 14 ([34]). Aut (B,,) = Aut (A,).

The group of automorphisms of the set of all affine functions in n variables consists, as it is
well known, of mappings of the form (3) with affine permutation 7 and affine shift g, see, for
example, [22]. Note that the set of all affine functions in n variables forms a group isomorphic
to FSH. Let the symbol x stands for the semidirect product, then the result is formulated as
follows.

Theorem 15 ([34]). Aut (B,) = GA(n) x Fy+1,

These results imply the non-existence of a more general approach to equivalence of bent
functions than that on the base of isometric mappings.

6.4 The group of automorphisms of the set of (anti-)self-dual bent functions

In [4] the following problem was pointed:

Open question (Carlet, Danielson, Parker, Solé, 2010): to find mappings preserving self-
duality, distinct from the known ones, or give a proof that there are no more.

In [20], this question was resolved within isometric mappings of the set of all Boolean func-
tions in n > 4 variables into itself.

At first there is the problem of how the sets of isometric mapping preserving self-duality and
anti-self-duality or, in other words, groups of automorphisms of the sets SB*(n) and SB™(n) are
related. This problem was solved in [20], where with a use of the orthogonal decomposition (2)
and the basis from the Theorem 9 it was proved that

Theorem 16 ([20]). If n > 4, then Aut (SB*(n)) = Aut (SB™(n)).
In [20] the criterion of preserving self-duality was also presented:

Theorem 17 ([20]). If n > 4, then isometric mapping px,q belongs to Aut (SB¥(n)) if and only
if, for any x,y € Fy, it holds

(r(x),y) ® g(x) = (z, 7 (y)) D g (v (y)).

In matrix terms the criterion can be formulated as AH, = H,A, where A is the matrix
which represents the mapping ¢ 4.

The problem of characterization mappings which preserve self-duality was studied
in [4, 12], where it was shown that the mapping (1) preserves self-duality of a bent function, in
other words, it is an element of Aut (SBJr (n)) It is obvious that this mapping is isometric and
corresponds to ¢r 4 € I, with

m(z)=L(z®c), g(x) = (c,x) Dd, zeFy,

where L € Oy, ¢ € F}, wt(c) is even, d € Fo. The group which consists of mappings of such
form is called an extended orthogonal group and denoted by O, [9, 12]. It is known that this
group is a subgroup of GL (n + 2,Fs) [12].
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In paper [20] known results were generalized within isometric mappings from the set Z,
for n > 4. Namely, by using the criterion from Theorem 17 and the matrix representation of
isometric mappings (see Section 6.2) it was proved that the desired group of automorphisms
coincides with the extended orthogonal group.

Theorem 18 ([20]). Forn >4 it holds
Aut (SB*(n)) = Aut (SB™(n)) = O,,.

It follows that the classification of self-dual bent functions in n > 4 variables based on
the restricted form of affine equivalence proposed in articles [4, 12] is the most general within
isometric mappings of the set of all Boolean functions in n variables into itself.

7 Isometric mappings and duality

In this section we discuss results from paper [20] on characterization of isometric mappings which
define bijections between self-dual and anti-self dual bent functions, and description of isometric
mappings which preserve or change the sign of the Rayleigh quotient of a Boolean function.

7.1 Isometric bijections between self-dual and anti-self-dual bent functions

It is known [4] that there exists a bijection between SB*(n) and SB™(n), based on the decom-
position of sign functions of (anti-)self-dual bent functions. Also note that from the existence
of such bijection it follows that ’SB"'(n)’ = }SB_(n)‘.

Namely, let (Y, Z) € {+1}*", where Y, Z € {jzl}zn_l, be a sign function for some f € SBT(n).
Then a vector (Z,-Y) € {:|:1}2n is a sign function for some function from SB™(n). In terms of
isometric mappings the mentioned transformation can be represented as

f@) — f@®c)®(ca),
where ¢ = (1,0,0,...,0) € F7.
In paper [15] it was mentioned that the more general form of this mapping
fa) — Fa© ) ® (o),

where ¢ € F}, wt(c) is odd, is a bijection between SB*(n) and SB™(n). It is obvious that this
mapping is an element from Z,.

In paper [20] these results were generalized within isometric mappings from the set Z,, for
n > 4.

The criterion of bijectivity between self-dual and anti-self-dual bent functions was obtained
in [20] with a use of the orthogonal decomposition (2) and the basis from the Theorem 9.

Theorem 19 ([20]). Let n > 4, then isometric mapping ¢ 4 € I, is a bijection between SBT (n)
and SB™(n) if and only if, for any x,y € FY, it holds

(n(x),y) ® g(x) = (2,77 (y)) ® g (77 (y)) ® 1.
By using this criterion in [20] the general form of considered isometric bijections was found.

Theorem 20 ([20]). For n > 4 isometric mapping ¢r 4 € L, is a bijection between SB*(n) and
SB™(n) if and only if
m(x) =Lz ®c), g(z) = (c,x) & d, x €Fg,
where L € Oy, ¢ € FY, wt(c) is odd, d € Fs.
Thus, from Theorems 18 and 20 we can conclude that if we take a mapping from the group O,
and replace the vector ¢ € I} by a binary vector of length n with an odd Hamming weight then

we switch the mapping from the “automorphism mode” to the “bijection mode” between the
sets SBT(n) and SB™(n).
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7.2 Isometric mappings and the Rayleigh quotient
In [4] the Rayleigh quotient Sy of a Boolean function f € F,, was defined as

Sp= 3 (~)f@eIWely = §™ (L1)fW(y).

z,yelfy yeFy

In a scope of bent functions the Rayleigh quotient characterizes the Hamming distance
between a bent function and its dual. Indeed, let f € B,,, then

e 1 1
dlSt(f,f):Q 1_st:2 1—§Nf

In [4] it was proved that for any f € F,, the absolute value of Sy is at most 237/2 ith
equality if and only if f is self-dual (+23”/ 2) and anti-self-dual (—23”/ 2) bent function. That
is the maximum (minimum) value of the Rayleigh quotient of a Boolean function in an even
number of variables is attainable on self-dual (anti-self-dual) bent functions and only them, thus
providing a criterion for (anti-)self-duality in terms of the Rayleigh quotient values.

In article [9] the operations on Boolean functions that preserve bentness and the Rayleigh
quotient were given. Namely, it was proved that for any f € B,,L € O,,c € F},d € Fa the
functions g, h € B,, defined as g(z) = f (Lz) ® d and h(x) = f (x ® ¢) ® (¢, z) provide Ny = Ny
and Nj, = (—1){*9 Ny,

The mentioned operations are isometric mappings from Z,,. The complete characterization
of isometric mappings that preserve the Rayleigh quotient as well as change it was given in [20].

Theorem 21 ([20]). Ifn > 4 then isometric mapping ¢xq € L, preserves the Rayleigh quotient
of every Boolean function in n variables if and only if pr 4 € Aut (SB+(n)).

Theorem 22 ([20]). Ifn > 4 then isometric mapping ¢ 4 € I, changes the sign of the Rayleigh
quotient of every Boolean function in n variables if and only if it is a bijection between SB™(n)

and SB™(n).

In a scope of bent functions the Rayleigh quotient characterizes the Hamming distance
between a bent function and its dual. Indeed, let f € B,,, then

Sy

. N _on—1
dist(f, f) =21 = oL

So, from Theorem 21 we immediately have that general form of isometric mappings, which
preserve the Hamming distance between every bent function and its dual, is described by the
extended orthogonal group O,, (see Theorem 2).

Conclusion

In this work, we have given a review of metrical properties of the set of bent functions and its
subset of functions which coincide with their duals. The group of automorphisms and metrical
complements of these sets are described. We also reviewed some general metrical properties of
the set of self-dual bent functions and considered an iterative construction of bent functions.
Some relevant open problems and hypothesis on bent functions weere discussed.

An interesting question is the characterization of isometric mappings preserving bentness
and self-duality, that are beyond the automorphisms of the set of all Boolean functions.

The solution of the problems, that were considered in this review, with regard to different
generalizations of bent functions that is study of metrical properties and the duality as well as
self-duality in this scope is a goal worth pursuing.
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This review is devoted to the study of metric complements and metric regularity in
the Boolean cube and in arbitrary finite metric spaces. Let A be an arbitrary subset
a finite metric space M, and A be the metric complement of A — the set of all points
of M at the maximal possible distance from A. If the metric complement of the set
A coincides with A, then the set A is called a metrically regular set. The problem of
investigating metrically regular sets was posed by N. Tokareva in 2012 when studying
metric properties of bent functions, which have important applications in cryptography
and coding theory and are also one of the earliest examples of a metrically regular
set. In this paper, main known problems and results concerning the topic of metric
regularity are overviewed, such as the problem of finding the largest and the smallest
metrically regular set, both in the general case and in the case of fixed covering radius,
and the problem of obtaining metric complements and establishing metric regularity
of linear codes. Results concerning metric regularity of partition sets of functions and
Reed-Muller codes are presented.

Keywords: metrically reqular set, metric complement, covering radius, bent function,
deep hole, Reed-Muller code, linear code

JauubIil 0030p TOCBSIIEH MCCIESOBAHUSIM METPUIECKUX JOTOJHEHUH W MEeTPUIECKOH
peryasapHocTu B bysieBoM Kybe v B IIPOU3BOJIbHBIX KOHEYHBIX METPUUYECKUX TPOCTPAH-
crBax. [lycte A — npon3BOJIBHOE TOAMHOKECTBO KOHEIHOTO METPUUYECKOrO TPOCTPAH-
crea M, a A— MEeTPUIECKOe JOMoJHeHne A — MHOKeCTBO BeexX ToUeK M, HaXOMAIINXCsT
Ha MaKCUMAaJIbHO BO3MOXKHOM paccTogann oT A. Ecin MeTpudeckoe JOTOTHEHTE MHO-
xectBa A COBMAIaeT ¢ MHOXKECTBOM A, TO A HA3BIBAETCS MEMPUUECKU PE2YAADPHBIM.
3ajiava U3ydeHus METPUUYECKH PETyISpHBIX MHOXKecTB ObLia mocrasiena H. Tokape-
Boit B 2012 rogy B TIporecce M3yUeHWsT METPUUECKUX CBOWCTB Oenm-pynruud. Bewrr-
QYHKIMY UMEIOT BayKHBIE NMPUJIOXKEHUST B KPUNTOTpadUu U TEOPUH KOJIUPOBAHUS, A
TaKKe ABJIAIOTCS OJHUM M3 TEPBBIX MPUMEPOB METPUUECKN PEryJIaPHOT0 MHOXKECTBA.
B nauuoit pabore npoBoiuTcst 0630p OCHOBHBIX 33J1a49 U PE3YJIBTATOB, CBI3aHHBIX C I10-
HATUEM METPUIECKON PEry/IgpHOCTH, B 9ACTHOCTH, 331294 IOMCKA HAMOOIBINNX U HAU-
MEHBIINX METPUICCKH PErYJISPHBIX MHOXKECTB (KakK B OOIIEM CjIydae, TaK U B CJIydae
(bUKCHPOBAHHOTO paMyCa MOKPBITUS ), 33/a9a HAXOXKJEHUA METPUIECKOrO JOMOJIHE-
HUSA U ONIPEIEICHUST METPUIECKON PErY/IIPHOCTH TMHEHHBIX KO10B. [IpuBeseHsr pe3yib-
TaThI, CBSI3AHHBIE C METPUUECKON PETYAIPHOCTHI0 MHOXKECTB (DYyHKIUH, TOCTPOEHHBIX
Ha pa3duenHny MPOCTPAHCTBA, a TakxkKe koa0B Puma-Masmepa.

!The work was carried out within the framework of the state contract of the Sobolev Institute of
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Introduction

The problem of investigating and classifying metrically reqular sets was posed by
Tokareva [24,25] when studying metric properties of bent functions |20]. A Boolean function
f in even number of variables m is called a bent function if it is at the maximal possible
distance from the set of affine functions.

Bent functions have various applications in cryptography, coding theory and
combinatorics [4, 13, 25]. In cryptography, bent functions are valued because of their
outstanding nonlinearity, which helps to construct S-boxes for block ciphers with high
resistance to linear cryptanalysis, and, as it turned out, good diffusion properties and high
resistance to differential cryptanalysis [13]. Bent functions were also used in the construction
of the stream cipher Grain, being a part of a nonlinear feedback shift register [25]. From
the coding theory standpoint, bent functions form the set of points at the maximal possible
distance from the Reed-Muller code of the first order RM(1, m) in even number of variables
m. Bent functions are used to construct Kerdock codes, which are optimal and have large
code distances (see more in [13]). Bent functions also have a number of representations and
relations to different combinatorial objects: Hadamard difference sets, block designs, etc.
(see [13,25]).

However, many problems related to bent functions remain unsolved; in particular, the
gap between the best known lower and upper bound on the number of bent functions is
extremely large; currently known constructions of bent functions are rather scarse.

In 2010 [23], Tokareva has proved that, like bent functions are maximally distant from
affine functions, affine functions are at the maximal possible distance from bent functions,
thus establishing the metric regularity of both sets. Combined with the importance of bent
functions in cryptography and coding theory, this arouses the interest in studying the
property of metric regularity and in the classification of metrically regular sets.

This paper is devoted to the study of metrically regular sets, both in the Boolean cube
and in arbitrary finite metric spaces. Published results concerning the topic, as well as some
currently unpublished, are overviewed.

The first section provides necessary basic definitions, simple examples of metrically
regular sets and some of their trivial properties. Section 2 describes the results of Stanica,
Sasao and Butler [22] concerning metric complements and metric regularity of partition
sets of functions. Section 3 deals with the problem of finding the smallest and the largest
metrically regular sets, both in general and in the case of fixed distance between sets [17].
Strongly metrically reqular sets are introduced in Section 4 as a subclass of metrically
regular sets. These allow one to obtain iterative constructions of metrically regular sets and
get an estimate on how big the largest metrically regular set with fixed covering radius
can be [18]. Section 5 touches upon the problem of describing metric complements and
establishing metric regularity of linear codes. General results are presented, and the metric
regularity of several families of Reed-Muller codes is established [16,19].

1. Preliminaries
1.1. Definitions

Let M be a finite discrete metric space with a metric d(-, ), which admits values from
a set D. From now on every space mentioned in the paper will be a finite discrete metric
space. Let X C M be an arbitrary subset of the space and y € M be an arbitrary point.
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The distance d(y, X) from the point y to the set X is equal to ml)r(l d(y,x). The covering
Te

radius of the set X is defined as follows:

p(X) = maxd(z, X).
A set X with the covering radius r is also sometimes called a covering code |3] of radius r.
Consider the following set

lye M :d(y, X) = p(X)}

of all vectors at the maximal possible distance from the set X. This set is called the metric

complement [16] of X and is denoted by X. IfX = X, the set X is said to be metrically
reqular [24].

Note that metrically regular sets always come in pairs, i.e. if A is a metrically regular
set, its metric complement A is also a metrically regular set. In this work a pair consisting
of a metrically regular set A and its metric complement B = A will sometimes be referred
to as “a pair of metrically regular sets A, B”.

Throughout the paper we will mostly consider the metric space F} of binary vectors
of length n equipped with the Hamming metric. The Hamming distance dy(-,-) between
two binary vectors is defined as the number of coordinates in which these vectors differ,
while wt(-) denotes the Hamming weight of a vector, i.e. the number of nonzero values it
contains. Since [y is a field, F is also considered as a vector space, with the plus sign +
denoting addition of vectors modulo two. A Boolean function in m variables is an arbitrary
mapping from F7' to Fs.

1.2. Examples and basic results

Let us consider some simple examples of metric complements and metrically regular
sets in the space [F5:

1) Let X = {z} be the set consisting of one binary vector. It has covering radius n and its
metric complement is the set X = {x + 1}, consisting only of the opposite vector (here

1 is the all-ones vector). It follows that X = X, so X is a metrically regular set;

2) Consider a ball of radius r centered at x; i.e., X = {y € F4|d(z,y) < r}. Then the vector
x + 1 will be at the distance n — r from the set X, while any other vector will be at
a smaller distance. Therefore, the covering Eadius of X is equal to n — r and its metric

complement is the set X = {z +1}. Then X = {z}, which shows us that, unless r = 0,
the ball of radius r is not a metrically regular set.

For other examples of metric complements and metrically regular sets the reader is referred
to [16-18].

Let us return to an arbitrary metric space M with a metric admitting values from a set
D and present some basic results concerning metric regularity.

An automorphism of a set X C M is an isometric mapping from M into M which
maps X into itself. The following result [16] is straightforward from the definition of metric
regularity, and is also described in [23,24] for affine/bent functions:

Theorem 1. Let X C M be a metrically regular set. Then sets of automorphisms of
X and X coincide: Aut(X) = Aut(X).

As we could see from examples, not every set is metrically regular, which means that
we can apply the procedure of taking metric complement more than twice and obtain new
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sets. It has been proven [16] that this process stabilizes for any set after not more than
|D| — 1 repetitions:

Proposition 1. Let X be an arbitrary subset of the space M. Let us denote
Xo=X, Xpy1 = X, for k > 0. Then there exists a number M < |D| — 1 such that X, is
a metrically regular set for any m > M.

Using this proposition, we can, for example, split the set 2™ of all subsets of M into
equivalence classes, and call two sets XY C M equivalent if and only if the pair of
metrically regular sets A, A*, which we obtain from the set X by repeatedly obtaining
metric complement as in Proposition 1, coincides with the pair of metrically regular sets B,
B* which we obtain from the set Y. How would the equivalence classes look? The description
has not yet been given.

Proposition 1 is also useful when conducting experiments with metrically regular sets
using computers.

2. Partition sets of functions

In the work [22] Stdnica, Sasao and Butler introduce the notion of partition sets of
functions and study their metric complements and metric regularity.

A set S of Boolean functions is said to be a partition set with respect to a partition U
of the set F7, if the elements in the same block of ¢/ all map to 0 or all map to 1, and all
combinations of assignments to blocks are included in §. Partition set functions include,
for example symmetric functions, rotation symmetric functions, self-anti-dual-functions and
linear structure functions.

The following theorem presents the main result of their work, describing the covering
radius and the metric complement of a partition set of functions:

Theorem 2. Consider a partition set of functions &, and let us denote the covering
radius of S as ps. Let Ns be the number of Boolean functions at distance ps from S. Then,

ps = ZZ:UQ/QJ and N = ﬁz_k;i 1mod 2 ((ka/i%) " <U:/121>> 7

i=1 i=1
where k; is the cardinality of the i-th block of the [ blocks in partition U.
The proof of the theorem is constructive and gives an explicit description of the metric

complement S. From this description the equality S=38is trivially established, showing
that all partition sets of functions are metrically regular.

The authors then proceed to investigate special cases of partition sets of functions,
namely, symmetric and rotation symmetric functions. They calculate covering radii for
both of these sets, give characterization for the set of maximally asymmetric functions (the
metric complement of the set of symmetric functions) and calculate the number of such
functions. They also study the weight distribution of maximally asymmetric functions, as
well as their algebraic degrees, and provide a classification of all functions with respect to
the distance from the set of symmetric functions. For details, the reader is referred to [22].

3. Largest and smallest metrically regular sets

Let us return to affine and bent functions. Since the gap between the best known upper
and lower bounds on the size of the set of bent functions is so large, it is interesting
to investigate possible cardinalities of metrically regular sets, particularly, the extreme
cardinalities, in an attempt to improve known bounds. The work [17] focuses on the problem
of finding the largest and the smallest metrically regular sets.
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3.1. General problem

In the Boolean cube Fj with the Hamming distance, any smallest metrically regular
set has cardinality 1, as can be seen from the simplest example X = {z}, z € F}. For
the largest metrically regular set the solution is not so trivial. The following theorem [17]
reduces the general problem to a special case:

Theorem 3. Let A, B C F} be a pair of metrically regular sets, i.e. A = E, B = A.
Then there exists a pair of metrically regular sets A*, B* at distance 1 from each other such
that either A C A*, B C B* or both A,B C A*.

The theorem tells us that for each metrically regular set in the Boolean cube there exists
a metrically regular superset with the covering radius of 1. Therefore, the covering radius
of the largest metrically regular set in the Boolean cube is equal to 1. Since for any set A
with p(A) = 1 it holds AU A = F%, the largest metrically regular set is the metric (and
ordinary) complement of the smallest metrically regular set with the covering radius equal
to 1.

The problem is reduced further by the following fact [17]:

Proposition 2. If C' C [} is a minimal covering code of radius 1, then C'is metrically
regular.

It follows from the Proposition 2 that any smallest covering code of radius 1 is also
a smallest metrically regular set with the covering radius 1. Combined with Theorem 3,
this shows that the problem of finding the largest metrically regular set is equivalent to
the problem of finding the smallest covering code of radius 1. This is an open problem of
coding theory [3] and is solved mostly for particular cases and small dimensions.

Proposition 2 is conjectured [17]| to hold true for larger values of the covering radius,
however, this has not been proved yet:

Conjecture 1. If C C F} is a covering code of radius r of minimal size, then C' is
metrically regular.

The conjecture was computationally checked [17]| for several minimal covering codes with
n = 2r + 3,n = 2r + 4, where r equals 2 or 3. Constructions of these codes can be found
in [2,5].

3.2. Fixed distances

As we see from the previous subsection, the general problems of finding the largest and
the smallest metrically regular sets are reduced to the cases when the covering radius is
trivial (equal to either 1 or n). However, the set of bent functions in m variables B,, has
the covering radius equal to 2”~' — 2% 1. In the work [17], the sizes of the sets at a fixed
distance r from each other are considered. Theses sizes are estimated nondirectly, through
estimating the size of the union of two metrically regular sets, maximally distant one from
another. Let us return to the general finite metric space M with a metric d(-,-) admitting
values from a set D. Then, the following bound holds [17]:

Theorem 4. Let A,B C M be a pair of metrically regular sets at distance r € D from
each other, and let C} be the size of the largest sphere of radius £ € D in M. Then

2| M|
14+ > Gy

keD
k<r

Al +[B| =

This bound is very similar to the sphere-packing bound on the size of a code, well-known
in the coding theory. In the case when the space M is I} with the Hamming metric, the
bound becomes:
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Corollary 1. Let A,B C F} be a pair of metrically regular sets at distance r from

each other. Then
2n+1

LT ()

4. Strongly metrically regular sets

Al +[B| =

41. Preliminaries

Metrically regular sets are defined by their outstanding metric properties, but a lot of
them possess even more regularity. In order to investigate largest and smallest metrically
regular sets further, the notion of a strongly metrically reqular set was introduced in [18].

Let A C F be a set with the covering radius 7. The set A is called strongly metrically
regular, if for any vector x € F} it holds

d(z, A) + d(z, A) = r.

In other words, any vector of the Boolean cube belongs to some shortest path from the set
A to the set A. Tt is clear from the definition that any strongly metrically regular set is
metrically regular.

The following pair of metrically regular sets gives us a simple example: A = {0}, A = {1}.

Any vector z € F} with the Hamming weight £ is at distance k£ from the set A and at
distance (n — k) from the set ﬁ, so the sum of both distances is equal to n, which is the
covering radius of these sets.

But not all metrically regular sets are strongly metrically regular. One of the problems of
the international cryptographic olympiad NSUCRYPTO 2016 [26] was to find a metrically
regular set which is not strongly metrically regular (or prove that such set does not exist),
and several contestants managed to find a solution. The smallest known example of such a
set is contained in the Boolean cube of dimension 7.

Let A be an arbitrary subset of the Boolean cube F. The layer representation of F}
with respect to the set A is the sequence of layers defined as follows:

Ap :={z e Fyld(z,A) =k}, k=0,1,...,r

where 7 is the covering radius of A. Using layer representation, strongly metrically regular
sets can alternatively be defined as follows [18]:

Proposition 3. Set A is strongly metrically regular if and only if for any % from 0 to
r it holds A, = A,_j, where r is the covering radius of both sets.

It is easy to see that completely regular codes [15] are strongly metrically regular. The

converse is not true: an example of a strongly metrically regular set which is not a completely
regular code is the set A = {(000), (011), (111)} in F3.

42. Iterative constructions

In the work [18] several iterative constructions of strongly metrically regular sets are
obtained:

Theorem 5. Let A be a strongly metrically regular set with the covering radius r.
Then C'= AU A is also a strongly metrically regular set.

This theorem is then generalized to obtain more iterative constructions of strongly
metrically regular sets:
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Theorem 6. Let A be a strongly metrically regular set with the covering radius » > 0
(case r = 0 is trivial). Let iy,... 1 be a sequence of indices satisfying 0 <41 < iy < ... <

151 < iy < r. Then the union C' = U A;, 1s a strongly metrically regular set if and only if

there exists a number p > 0 such that all the following conditions are satisfied:

1) forany k € {1,...,s — 1} the distance (ix41 — ix) is equal to 1, 2p or 2p + 1;

2) for any k € {2,...,s— 1} at least one of the distances (iy41 — ix), (ix — ix_1) is greater
than 1;

3) iy is equal either to p or to 0, and if iy = 0, then is —i; = 2p or 2p+ 1 in case if iy exists;

4) i is equal either to r — p or to r, and if iy = r, then iy — i,y = 2p or 2p + 1 in case if
151 exists;

The number p is the covering radius of C.

Theorem 6 allows one to construct many new strongly metrically regular sets with
smaller covering radii given a strongly metrically regular set with the covering radius r. For
example, consider a strongly metrically regular set with the covering radius 20. Then, if
we take the union of layers with indices {2,3,7,12, 16,20}, it will be a strongly metrically
regular set with the covering radius 2 and its metric complement will consist of layers with
indices {0, 5,9, 10, 14, 18}.

The number of strongly metrically regular sets with the covering radius » which can be
constructed using Theorem 6 is also calculated in [18]:

Theorem 7. Let A be a strongly metrically regular set with the covering radius r.
Then the number G,(r) of different strongly metrically regular sets with covering radius
p that can be obtained by applying Theorem 6 to the set A can be calculated using the
following recurrent formulas:

Go(r—p)+G,(r—p—1), whenr>p
Gy(r) =< 2, when r = p
0, when 0 <r <p

4.3. Special constructions and lower bounds

Utilizing Theorem 6 and other considerations, two families of “large” strongly metrically
regular sets {Y,/'}, {Z] },>o, are constructed in [18]. Here Y,7, ZI C F% and p(Y,)) = p(Z]) =
r. Sets from these families asymptotically cover a large part of the Boolean cube:

n o0 2
Y| "% 2", (1)
2r+1
2r\ rooo 1
77| = on?r < om, 2
izl = ()R )

The lower bound on the sizes of sets from the family {Y"} is obtained, which results in
the following lower bound on the size of the largest metrically regular set for fixed covering
radius:

Theorem 8. Let A be the largest metrically regular set with the covering radius r in
the Boolean cube of dimension n (n > 2r), and let p be the remainder of n + 1 divided by

2r + 1. Then
2 2 2r
A> on - 2n—2r 3
o v B
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Construction of the family of strongly metrically regular sets {Y,'} allows one to obtain
metrically regular sets with the covering radius r that cover roughly the fraction TQH of
the whole Boolean cube when n is big enough, while the family {Z]} contains metrically
regular sets with the covering radius r that cover roughly the fraction = of the Boolean

Jrr
cube for large values of r.

5. Metric complements and metric regularity of linear codes
5.1. General results

The papers [16,19] touch upon the topic of metric complements of linear codes in the
Boolean cube. First, let us formulate some basic results:

Proposition 4. Let L C F7 be a linear code. Then the metric complement of L is the
union of cosets of L.

This result follows directly from the equality dy(z,y) = wt(xz + y) and the linearity of the
code. The following bound is also a simple and well-known result:

Proposition 5. Let L C F} be a linear code of dimension k. Then p(L) < n — k.

The work [16] describes sufficient and necessary conditions on an arbitrary linear code
L to attain this bound, as well as some sufficient conditions for p(L) = n —k — 1 or
p(L) = n—k— 2. Both of these results also present explicit form of the metric complement
of the linear code in question, and in the case when p(L) = n — k, the code L is found to
be metrically regular.

The following characterization of the second metric complement using the first is also
presented in [16,24]:

Proposition 6. Let L C F? be a linear code. Then p(L) = p(L) and a vector z is in
L is and only ifx+L=L.
Corollary 2. Let L C [} be a linear code. Assume that L is an affine subspace, i.e.

= a + L, for some linear code Ll.ThenZ:Ll.
5.2. Sets of affine/bent functions

Let us remember that the notion of a metrically regular set and the problem of
investigating and classifying metrically regular sets was first posed by Tokareva in the
work [24] when studying metric properties of bent functions, particularly, the duality
between bent functions and affine functions.

A Boolean function in even number of variables m is called a bent function, if it is at
the maximal possible distance from the set of affine functions A,,. If we denote the set of
bent functions as B,,, then we have, by definition, B,, = A,,.

Despite the fact that all characterizations of the set of bent functions that are currently
known are rather ineffective when it comes to counting and constructing bent-functions, it
turned out that these characterizations are enough to establish metric regularity of the set
of affine/bent functions.

It follows from Proposition 6 of the previous subsection that a linear code is metrically
regular if and only if no vectors other that those from the code keep its metric complement
stable under addition. This property of linear codes was used in [23,24] to establish that the
set of affine functions is the metric complement of the set of bent functions: Tokareva has
shown that for any non-affine function f there exists a bent function g (from the so-called
“Maiorana-McFarland” class of bent functions) such that f+ ¢ is not a bent function. Thus,
the following holds:

Theorem 9. Sets of affine functions A,, and bent functions B,, are metrically regular.

=)
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A. Kutsenko studied metric properties of two subclasses of bent functions called self-
dual and anti-self-dual bent functions. In the work [11] he shows that the set of self-dual
bent functions is the metric complement of the set of anti-self-dual bent-functions and vice
versa, thus establishing the metric regularity of both of these sets. Other metric properties
of bent functions (e.g. the graph of minimal distances between bent functions) were also
studied by N. Kolomeec in [7-10].

53. Reed-Muller codes

Let F™ be the set of all Boolean functions in m variables. The Reed-Muller code of
order k£ in m variables is defined as follows:

RM(k,m) ={f € F™ : deg(f) < k},

where deg(-) denotes the degree of the algebraic normal form (ANF) |25] of the function.
These codes may also be represented as sets of walue vectors of corresponding functions:
binary vectors of length 2™, containing values which a function assumes on all vectors of
F7*, listed in some fixed order. Distances between functions can therefore be defined as
distances between their value vectors.

The Reed-Muller code of order 1 is, by definition, the set of affine functions, which is,
in the case of even number of variables m, metrically regular (as is its metric complement
— the set of bent functions). Does this hold for other codes from this family? The work [19]
is devoted to the investigation of this metric property for other Reed-Muller codes.

In the work [1], Berlekamp and Welch presented a partition of all cosets of the RM(1, 5)
code into 48 classes with respect to the EA-equivalence (extended affine equivalence) and
obtained weight distributions for each class of cosets. The full weight distribution allows one
to explicitly describe the metric complement of the code. Proposition 6 from the previous
subsection is then used to establish the metric regularity of RM(1,5) in the work [19]. It
is shown that for any equivalence class of cosets (other than the RM(1, 5&elf), adding

a function from that class to some function from the metric complement RM(1,5) yields
a function outside of the metric complement, leading to the following

Theorem 10. The code RM(1,5) is metrically regular.

Reed-Muller codes of orders 0, m and m — 1 coincide with the repetition code, the whole
space and the even weight code respectively. It is trivial that all of them are metrically
regular. Metric regularity of the Reed-Muller code of order m — 2 is also easy to establish
as follows [19]:

The Reed-Muller code of order m — 2 has covering radius 2 [3]. By definition, it consists
of all Boolean functions of degree at most m — 2. Since all functions of degree m have odd
weights, and all functions of smaller degree have even weights, functions of degree m are
at distance 1 from RM(m — 2, m), while functions of degree m — 1 are at distance 2 and
therefore -

RM(m —2,m) = RM(m —1,m)\ RM(m —2,m).

Since RM(m — 2,m) is linear, p(m(m —2,m)) = p(RM(m —2,m)) = 2 and thus

functions of degree m are at distance 1 from W(m—Q, m). It follows that m(m—Q, m) =
RM(m — 2,m) and therefore the following holds:

Theorem 11. Codes RM(k,m) for k > m — 2 are metrically regular.
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Codes of order m — 3 are harder to handle. In 1979, McLoughlin [12]| has proved that
m—+ 1, if m is odd,

m+ 2, if m is even.

p(RM(m —3,m)) = {

This result is reestablished by Cohen et al. in the book “Covering codes” [3] using a
method of syndrome matrices, different from the method in [12]. This method allows the
author of [19] not only to obtain the covering radius of the Reed-Muller code of order m —3,
but also to describe the metric complement of this code. As with the covering radius, the
cases of even and odd m are distinct.

In the case of even number of variables m, the metric complement can be described as
follows: -

RM(m —3,m) = | (9 +RM(m —3,m)),
geG
where

G ={g:supp(g9) = {0,x1,X0 ..., X, X1 + ... + X},
{x1,...,%Xn} are linearly independent},
while for m odd, the description is as follows:
m(m —3,m) = U (9 + RM(m —3,m)),
geG1UG2

where
G1={g:supp(g) =1{0,x1,X0...,Xm},{X1,...,Xm} are linearly independent},

and

Go ={g:supp(g) ={0,x1,X0 ..., Xpp—1,X1 + - .. + X1},
{x1,...,Xm_1} are linearly independent}.

Then, the metric regularity of RM (m—3,m) is proved by establishing that no functions
other that those contained in RM (m—3, m) preserve the metric complement under addition
(once again utilizing Proposition 6 from Subsection 5.1).

The author then considers the code RM(2,6). Using a proper ordering of the values in
the value vectors of functions, this code can be presented in the following manner:

RM(2,6) ={(u,u+v):uecRM(25),veRM(,5)}.

Since both RM(2,5) and RM(1,5) were shown to be metrically regular, this
constructions proves useful and allows the author to establish the metric regularity of the
code RM(2,6) as well. The proof of this result heavily relies on the fact that RM(2,6)
attains the upper bound on the covering radius provided by the (u,u+ v) construction,
i.e. p(RM(2,6)) = p(RM(2,5)) + p(RM(1,5)) [21].

Thus, the metric regularity of the codes RM(1,5), RM(2,6) and of the codes
RM(k,m) for k > m — 3 has been established. Factoring in the result by Tokareva [23],
which proves the metric regularity of RM(1,m) for even m, this covers all infinite families
of Reed-Muller codes with known covering radius. The only other Reed-Muller codes
with known covering radius, metric regularity of which has not been yet established,
are RM(1,7) [6,14] and RM(2,7) [27]. Given these results, the following conjecture is
formulated [19]:

Conjecture 2. All Reed-Muller codes RM(k, m) are metrically regular.
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Conclusion

In this work the main published results concerning metric complements and metric
regularity are presented. Metric regularity of partition sets of functions is established.
General problem of finding smallest metrically regular sets is found to be trivial, while
finding the largest is shown to be as hard as finding the smallest covering code of radius
1. For fixed covering radius, a lower bounds on the sum of sizes of metrically regular sets
constituting a pair is obtained. Using the notion of strongly metrically regular set, iterative
constructions of metrically regular sets are described and the number of sets which can be
obtained using these constructions is calculated. Two families of “large” (relative to the size
of F4) metrically regular sets with fixed covering radius are constructed, giving the idea of
how big the largest metrically regular sets can be. Characterizations of the first and the
second metric complements of linear codes are given. Metric regularity of the Reed-Muller
codes RM(1,m) for m even, RM(k,m) for k =0, k > m — 3 and of the codes RM(1,5),
RM(2,6), is established.

REFERENCES

1. Berlekamp E., Welch N. Weight distributions of the cosets of the (32,6) Reed-Muller code.
IEEE Transactions on Information Theory, 1972, vol. 18, no. 1, pp. 203-207.

2. Cohen G., Lobstein A., Sloane N. Further results on the covering radius of codes. TEEE
Transactions on Information Theory, 1986, vol. 32, no. 5, pp. 680—-694.

3. Cohen G., Honkala I., Litsyn S., Lobstein A. Covering codes. Elsevier, 1997, vol. 54. 541 p.

4. Cusick T. W., Stanicd P. Cryptographic Boolean functions and applications. Academic Press,
2017, 288 p.

5. Graham R. L., Sloane N. On the covering radius of codes. IEEE Transactions on Information
Theory, 1985, vol. 31, no. 3, pp. 385-401.

6. Hou X.D. Covering Radius of the Reed-Muller code R(1,7) — A Simpler Proof. Journal of
Combinatorial Theory, Series A, 1996, vol. 74, no. 2, pp. 337-341.

7. Kolomeec N. A., Pavlov A. V. Svoystva bent-funktsiy, nakhodyashchikhsya na minimal’'nom
rasstoyanii drug ot druga [Properties of bent functions which are at minimal distance from
each other|. Prikladnaya diskretnaya matematika, 2009, vol. 6, no. 4, pp. 5-20.

8. Kolomeets N. A. Enumeration of the bent functions of least deviation from a quadratic bent
function. Journal of Applied and Industrial Mathematics, 2012, vol. 6, no. 3, pp. 306-317.

9. Kolomeec N. A. Verkhnyaya otsenka chisla bent-funktsiy na rasstoyanii 2¢ ot proizvol’noy bent-
funktsii ot 2k peremennykh [Upper bound on the number of bent functions which are at distance
2F from an arbitrary bent function|. Prikladnaya diskretnaya matematika, 2014, vol. 25, no. 3,
pp. 28-39.

10. Kolomeec N. The graph of minimal distances of bent functions and its properties. Designs,
Codes and Cryptography, 2017, vol. 85, no. 3, pp. 395-410.

11. Kutsenko A. Metrical properties of self-dual bent functions. Designs, Codes and Cryptography,
2020, vol. 88, no. 1, pp.201-222.

12. McLoughlin A. M. The Covering Radius of the (m—3)-rd Order Reed Muller Codes and a Lower
Bound on the (m — 4)-th Order Reed Muller Codes. SIAM Journal on Applied Mathematics,
1979, vol. 37, no. 2, pp.419-422.

13. Mesnager S. Bent Functions: Fundamentals and Results. Springer International Publishing,
2016, 544 p.

14.  Mykkeltveit J. The covering radius of the (128, 8) Reed-Muller code is 56. IEEE Transactions
on Information Theory, 1980, vol. 26, no. 3, pp. 359-362.

15. Neumaier A. Completely regular codes. Discrete mathematics, 1992, vol. 106, pp. 353—-360.

91



A. K. Oblaukhov

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Oblaukhov A. K. Metric complements to subspaces in the Boolean cube. Journal of Applied
and Industrial Mathematics, 2016, vol. 10, no. 3, pp. 397—403.

Oblaukhov A. K. Maximal metrically regular sets. Siberian Electronic Mathematical Reports,
2018, vol. 15, pp. 1842-1849.

Oblaukhov A. A lower bound on the size of the largest metrically regular subset of the Boolean
cube. Cryptography and Communications, 2019, vol. 11, no. 4, pp. 777-791.

Oblaukhov A. https://arxiv.org/abs/1912.10811 — On metric regularity of Reed-Muller
codes, 2019.

Rothaus O.S. On “bent” functions. Journal of Combinatorial Theory, Series A, 1976, vol. 20,
no. 3, pp. 300-305.

Schatz J. The second order Reed-Muller code of length 64 has covering radius 18. IEEE
Transactions on Information Theory, 1981, vol. 17, no. 4, pp. 529-530.

Stanica P., Sasao T., Butler J. T. Distance duality on some classes of Boolean functions.
Journal of Combinatorial Mathematics and Combinatorial Computing, 2018.

Tokareva N. N. The group of automorphisms of the set of bent functions. Discrete Mathematics
and Applications, 2010, vol. 20, no. 5-6, pp. 655—664.

Tokareva N. Duality between bent functions and affine functions. Discrete Mathematics, 2012,
vol. 312, no. 3, pp. 666—670.

Tokareva N. Bent functions: results and applications to cryptography. Academic Press, 2015.
220 p.

Tokareva N.,  Gorodilova A.,  Agievich S.,  Idrisova V., Kolomeec N.,  Kutsenko A.,
Oblaukhov A., Shushuev G. Mathematical methods in solutions of the problems presented
at the Third International Students’ Olympiad in Cryptography. Prikladnaya Diskretnaya
Matematika, 2018, no. 40, pp. 34-58.

Wang Q. The covering radius of the Reed-Muller code RM (2,7) is 40. Discrete Mathematics,
2019, vol. 342, no. 12, Article 111625.

OBLAUKHOV Alexey Konstantinovich — PhD student, Sobolev Institute of

Mathematics, Novosibirsk State University, Laboratory of Cryptography JetBrains
Research, Novosibirsk, Russia. E-mail: oblaukhov@gmail.com

92



Noname manuscript No.
(will be inserted by the editor)

On metric regularity of Reed-Muller codes

Alexey Oblaukhov

Received: date / Accepted: date

Abstract In this work we study metric properties of the well-known family of
binary Reed-Muller codes. Let A be an arbitrary subset of the Boolean cube,
and A be the metric complement of A — the set of all vectors of the Boolean
cube at the maximal possible distance from A. If the metric complement of A
coincides with A, then the set A is called a metrically reqular set. The problem
of investigating metrically regular sets appeared when studying bent functions,
which have important applications in cryptography and coding theory and are also
one of the earliest examples of a metrically regular set. In this work we describe
metric complements and establish metric regularity of the codes RM(0,m) and
RM(k,m) for k > m — 3. Additionally, metric regularity of the RM(1,5) code is
proved. Combined with previous results by Tokareva N. (2012) concerning duality
of affine and bent functions, this proves metric regularity of most Reed-Muller
codes with known covering radius. It is conjectured that all Reed-Muller codes are
metrically regular.

Keywords metrically regular set - metric complement - covering radius - bent
function - Reed-Muller code - deep hole

A. Oblaukhov

Mathematical Center in Akademgorodok,

Sobolev Institute of Mathematics,

Novosibirsk State University,

Laboratory of Cryptography JetBrains Research,

Novosibirsk, Russia

E-mail: oblaukhov@gmail.com

The work was supported by the Russian Foundation for Basic Research (projects no. 18-07-
01394, 18-31-00479, 19-31-90093); by the program of basic research of the SB RAS no.1.5.1,
project no.0314-2019-0017; by the Mathematical Center in Akademgorodok, by the Regional
Mathematical Center of NSU and by the Laboratory of Cryptography JetBrains Research.

93



Alexey Oblaukhov

1 Introduction

The problem of investigating and classifying metrically reqular sets was posed by
Tokareva [14,15] when studying metric properties of bent functions [11]. A Boolean
function f in even number of variables m is called a bent function if it is at the
maximal possible distance from the set of affine functions. Thus, the set of bent
functions B, is the metric complement of the set of affine functions A, or, in
other words, the metric complement of the Reed-Muller code RM(1,m). It has
been proved by Tokareva [14] that the set of affine functions is, conversely, the
metric complement of the set of bent functions. It follows that both of these sets
are metrically regular, which establishes metric regularity of the codes RM(1,m)
for even m.

It is straightforward from Neumaier’s definition [7] of completely regular codes
that they are metrically regular (but the converse is not true). Metric regularity
of several classes of partition set functions is studied in [13], while the work [4]
touches upon metric properties of self-dual bent functions. Metric regularity has
been actively investigated by the author: metric complements of linear subspaces
of the Boolean cube are studied in the paper [8], while the works [9] and [10] are
studying possible sizes of the largest and smallest metrically regular set.

In this work we investigate metric properties of Reed-Muller codes. Among
the codes of high order, covering radii of the codes RM(k,m), for k > m — 3 are
known. The covering radius of RM(1,m) for odd m > 7 is unknown, but has
been determined for RM(1,5) [1] and RM(1,7) [6,3]. In [12], Schatz has found
the covering radius of RM (2, 6), while recently Wang has established the covering
radius of RM(2,7) [16]. For m > 9, the covering radius of RM(2,m) is still
unknown. We prove that the codes RM(k, m), for k = 0 and k > m — 3 and the
code RM(1,5) are metrically regular and also describe their metric complements.

The paper is structured as follows. After providing necessary definitions and
examples, we prove metric regularity of the RM(1,5) code. After that we establish
metric regularity of Reed-Muller codes of order 0, order m — 2 and higher, and
then we move onto the codes of order m — 3. In order to handle this case, we
describe a “syndrome matrices method” of calculating distances from vectors to
the punctured RM(m—3,m) code, based on the “Covering codes” book by Cohen
et al [2]. Following the book, we calculate the covering radius of the Reed-Muller
code of order m—3. Utilizing the method further, we obtain the metric complement
of this code. The description of the complement allows us to establish that only
the functions from RM(m—3,m) are contained in the second metric complement,
which proves metric regularity of Reed-Muller codes of order m — 3. The paper
concludes with the overview of the results obtained and a hypothesis regarding
metric regularity of all Reed-Muller codes.

2 Definitions and examples

Let F3 be the space of binary vectors of length n with the Hamming metric. The
Hamming distance d(-,-) between two binary vectors is defined as the number of
coordinates in which these vectors differ, while wt(-) denotes the weight of a vector,
i.e. the number of nonzero values it contains. The plus sign + will denote addition

94



On metric regularity of Reed-Muller codes

modulo two (componentwise in case of vectors), while the componentwise product
of two binary vectors will be denoted as .

Let X C F% be an arbitrary set and y € F§ be an arbitrary vector. The distance
from the vector y to the set X is defined as

d(y, X) = min d(y, ).

The covering radius of the set X is defined as

p(X) = max d(z, X).

The set X with p(X) = r is also called a covering code [2] of radius r.
Consider the set
Y ={y € Fz|d(y, X) = p(X)}

of all vectors at the maximal possible distance from the set X. This set is called
the metric complement [8] of X and is denoted by X. Vectors from the metric

complement are sometimes called deep holes of a code. If X = X then the set X
is said to be metrically regular [15].

Note that metrically regular sets always come in pairs, i.e. if A is a metrically
regular set, then its metric complement A is also a metrically regular set and
both of them have the same covering radius. For some simple examples of metric
complements and metrically regular sets, refer to [8-10].

Let F™ be the set of all Boolean functions in m variables. Reed-Muller code
of order k is defined as:

RM(k,m) = {f € F™ : deg(f) < k},

where deg(-) denotes the degree of the algebraic normal form (ANF) of the func-
tion. These codes may be also represented as sets of wvalue vectors of functions.
Throughout the paper we will often switch between these two representations. In
most cases, m will denote the number of variables, while n := 2™ will denote the
dimension of the space of value vectors, which have coordinates numbered from 0
to 2™ — 1. The i-th coordinate of a value vector is the value of the correspond-
ing function at the binary vector of length m which is a binary representation of
the number i. Weights of functions, distances between functions and between a
function and a set of functions are defined as distances between their value vectors.

From now on, vectors of length m and square m x m matrices will be denoted
using roman typestyle letters (e.g. x,A), while vectors of length n and vectors
derived from them, as well as matrices related to such vectors, will be denoted
using bold letters (e.g. v, B).

Let f and ¢ be two functions in m variables. Denote as LR : F§* — FS* the
affine transformation of the variables with the matrix A and the vector b):

(f o LR)(x) = f(Ax +b).

Here o denotes the composition of the functions. If the vector b is zero, it will be
omitted from the notation. Functions f and g are called linearly equivalent if one
can be obtained from the other by applying a nonsingular linear transformation
to the variables, i.e. f = go La, where det A # 0.
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Ezxtended affine equivalence is more common when classifying boolean func-
tions: functions f and g are called EA -equivalent if there exists a nonsingular linear
transformation of variables A, a boolean vector b of length m and a function [ of
degree at most 1 such that f =go LR +1.

For our study we will use a variant of these two equivalence relations, which
will be referred to as extended linear equivalence (to the power of k). Functions f
and g are called ELk-equivalent if there exists a nonsingular binary matrix A and
a function ¢ of degree at most k such that

f=golLa+ec

It is easy to see that this relation is indeed an equivalence. We will denote this

equivalence as f X g.

Reed-Muller code of order k in m variables is usually denoted as RM (k,m).
Since we will refer to these codes regularly, we will instead use Ry to denote a
Reed-Muller code of order k in m variables.

3 Reed-Muller code RM(1,5)

In the work [1], Berlekamp and Welch presented a partition of all cosets of the
RM(1,5) code into 48 classes with respect to the EA-equivalence and obtained
weight distributions for each class of cosets. Four of these cosets contain only code-
words of weight 12 and higher, and those cosets constitute the metric complement
of RM(1,5). Thus we can present the metric complement of this code as:

7W(17 5y=A{f:f 2 g for some g from one of 4 farthest classes}
Since RM(1,5) is linear, it follows [8] that

p(RM(1,5)) = p(RM(L,5)) = 12

and f € RM(1,5) if and only if f + RM(1,5) = RM(1,5). Thus, in order
to establish metric regularity of RM(1,5), we must prove that for every f ¢
RM(1,5) it holds f + RM(L,5) # RM(L,5).

Let f. ¢ RM(1,5) be a function from a certain coset equivalence class C.
Assume that the function f. + gc, where g. € 7@\7(1, 5), does not belong to any
of the 4 equivalence classes from the complement 7@\\4(1,5). This implies that

fe+ @(1, 5) # m(l, 5) and thus fc is not in the second metric complement.
Let now f ¢ RM(1,5) be an arbitrary function from the class C, and let
(A, b,1) be the matrix, the vector and the affine function such that

foLR +1=f..

Denote »

g5 = (ge +1) o La".
Then the function f4 gy is EA-equivalent to fc+ g and therefore does not belong
to @(1,5). Since g5 € m(l,B), this implies that f ¢ @(1,5).
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Thus, if we prove that f +g¢g ¢ @(1,5) for some f € C and some g €
R/\M(l, 5), we will prove that no function from the equivalence class C' is in the
second metric complement.

The list of all representatives of equivalence classes of RM(1,5) and the proof
that none of the classes, except for RM(1,5) itself, belong to the second metric
complement can be found in the Appendix I of the paper under the

Theorem 1 The code RM(1,5) is metrically reqular.

4 Reed-Muller codes of orders 0, m, m — 1 and m — 2

Reed-Muller codes of orders 0, m and m — 1 coincide with the repetition code, the
whole space and the even weight code respectively. It is trivial that all of them are
metrically regular.

The Reed-Muller code of order m — 2 has covering radius 2 [2]. By definition,
it consists of all Boolean functions of degree at most m — 2. Since all functions of
degree m have odd weight, and all functions of smaller degree have even weight,
functions of degree m are at distance 1 from R,—2, while functions of degree m—1
are at distance 2 and therefore

7/?\47172 = Rmfl \Rm72-

Since Rp—2 is linear, p(ﬁmfz) = p(Rm—2) = 2 and thus functions of degree

m are at distance 1 from ﬁmfz It follows that ﬁmfz = Rm—2 and Ryp—2 is
metrically regular.

5 Reed-Muller codes of order m — 3: Syndrome method
McLoughlin [5] has proved that

p(Rom_s) = {m +1, %fm ?S odd,

m 4+ 2, if m is even.
We are going to reestablish this result following the “Covering codes” book by
Cohen et al, since our new results that follow rely on methods and terminology
described in the book. In particular, we will describe the method of obtaining the
covering radius of R,,_3 using syndrome matrices as it is presented in the book,
with few minor adjustments. After that we will proceed to study the metric com-
plement of R,,—3. Results in Chapters 5 and 6, as well as general result concerning
the covering radius of R,,—3, belong to Cohen et al [2], while all subsequent re-
sults concerning metric complements and metric regularity of the codes have been
obtained by the author.

Let us first consider the covering radius of the punctured Reed-Muller code
Ryn—3, i-€., the code without the 0-th coordinate (which corresponds to the value
of the function at zero). Let us denote the parity check matrix of this code as H.
The matrix H coincides with the parity check matrix of the non-punctured code
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Rom—3, but with the first all-one row and the first column removed. Since R,,—3
is dual to the code R2, the rows of H are punctured value vectors of the functions

Llyeeey my L1X2y, L1L3y...y Tm—1Tm.

The syndrome s of an arbitrary vector v € Fg_l is the product HvT. Let us
present the syndrome s as an m X m symmetric matrix S, where element s; ; of the
matrix is equal to the component of the syndrome corresponding to the row z;x; of
the parity check matrix H. Diagonal element s; ; of this matrix corresponds to the
row x; of the matrix H. Thus we have built a one-to-one correspondence between
cosets of R;,_3 and syndrome matrices S, i.e., all symmetric binary matrices.

Letel,...ep € Fgfl be the punctured value vectors of the functions x1,..., Tm,.

Notice that the row of H corresponding to the function x;z; is the componentwise
product ef * ej.

Consider an m x (n — 1) matrix By which has e * v as its i-th row. Then the
symmetric matrix Sy = ByBY corresponds to the syndrome HvT of the vector
v. It is easy to see that if f, is a function with the punctured value vector v, then
the set of nonzero columns of By is precisely the support of fy (bar, possibly, the
zero vector). The number of nonzero columns in By is equal to the weight of the
vector v.

Given an arbitrary vector v € Fi ! its distance d(v,Ro,_3) from the code is
equal to the weight of the coset leader:

o .
d(v,Rm_3) = Lpppin wt(u).

Using the established correspondences between syndromes and symmetric matri-
ces, we can rewrite this as

d(v,Rp_3) = Ll_Brréin Col(Bu),

ub; =

where C'ol(By) is the number of nonzero columns in the matrix By. Let us denote
this minimum as ¢(S) := min Col(By). Then
u:B,BT=S

d(V, R?nfi’)) = t(SV)a

and, since the correspondence between all syndromes and all symmetric matrices
is one-to-one, we have

P(Rom—3) = maxd(v, Ry, _3) = max {(S).

Moreover, a vector v is in the metric complement 7%?,1_3 if and only if ¢(Sy) =
P(Ron—3).

We will call any matrix B such that BBT = S a factor of S. We can thus
describe the value t(S) as the minimum number of nonzero columns in a factor
over all factors of S of the form By, where u € ]Fgfl. We will call any factor
achieving this minimum a minimal factor.

Let us now expand the definition of the value ¢(S).

Lemma 1 Let S be a symmetric matriz, and let B be its factor (i.e. BBT = 8).
The following operations do not change the property of B being a factor of S:
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deleting a zero column;

deleting two equal columns;

swapping any two columns;

adding an arbitrary vector b to each column from some subset of columns of B
of even size, given that all columns of this subset sum to zero.

Lo o~

Proof. Routine, left to the reader. a

Since subsets of nonzero columns of matrices {Byu|u € F3 ™'} are exactly all
possible subsets of nonzero columns of length m, and using Lemma 1, we can
remove all zero columns from allowed factors and ignore the possibility of duplicate
columns and thus reformulate the definition of the value #(S) in the following
manner, allowing arbitrary size matrices:

t(S) is the minimum number of columns in a factor over all factors of S. Any
factor achieving this minimum is called a minimal factor of S.

Moreover, any factor B of S corresponds to exactly one factor of the initial
form By — the factor with the set of nonzero columns coinciding with the set
of nonzero columns of B. Therefore, presenting a minimal factor for a symmetric
matrix S allows us to obtain a coset leader u for the coset which this symmetric
matrix represents.

6 Reed-Muller codes of order m — 3: Covering radius

In order to determine the covering radius of R.,_3, let us now investigate the
maximum value of ¢(S). Obviously,

t(S) > i k(B) > k(S
(8)> _ min__rank(B) > rank(s)

for any matrix S, and therefore

max t(S) = m.

Notice that, if S = BBT, then the vector consisting of all diagonal entries
of the matrix S is the sum of all columns of B. Assume that the matrix S is
nonsingular and has an all-zero diagonal. Then all columns of any of its factor B
sum to zero and thus all nonzero columns form a linearly dependent set of vectors.
Since rank(B) > rank(S) = m, this leads to t(S) > m + 1. Note that a matrix S
with such properties exists if and only if m is even (see e.g. [2] p. 249).

Combining these bounds, we obtain

msaxt(S) >m+1—m(m),
where m(m) is the parity function, equal to 1 for odd m and to 0 for even m.

We will now prove that this bound is tight. The following lemma will help us
to characterize minimal factors:

Lemma 2 Let S be a symmetric matriz, and let B be its minimal factor. Then
all proper subsets of columns of B are linearly independent.

Proof. See Appendix II. O
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Assume that for some symmetric matrix S it holds ¢(S) > m + 2. This means
that any minimal factor B of S has at least m + 2 columns and therefore con-
tains a linearly dependent proper subset of columns, which contradicts Lemma 2.
Therefore, t(S) < m + 1 for any matrix S.

7 Reed-Muller codes of order m — 3: Case m is even
7.1 Covering radius and metric complement of the punctured code

Let the number of variables m be even. Combining the upper and the lower bound
obtained in the previous chapter, we get:

p(Ron_3) = I’Iléixt(S) =m+1

and a vector v is in the metric complement of R;,_3 if and only if ¢(Sv) = m+ 1.
The following lemma will help us to characterize the metric complement of Ry, _5:

Lemma 3 Let S be a symmetric m X m matriz, where m is even. Then t(S) =
m + 1 if and only if S = BBT for some m x (m + 1) matriz B of rank m such
that all its columns sum to zero.

Proof. See Appendix II. a

Clearly, this lemma describes all minimal factors of all matrices S satisfying
t(S) =m+ 1. Let

U = {u: By has m + 1 nonzero columns, m of which are

linearly independent and all of them sum to zero}.

It is easy to see that the set of matrices {Bu|u € U} (up to columns permutations
and zero columns removal) includes exactly all minimal factors described in the
Lemma 3. Thus, if ¢(S) = m + 1 for some matrix S, then there exists a vector
u € U such that S = BuBZX. Conversely, for any u € U it holds t(BuB%) =
m + 1. Therefore, vectors from the set U cover all cosets contained in the metric
complement 7%;_3:
Rom—sz = U (u+Rp_3)-
ucU

7.2 Covering radius and metric complement of the non-punctured code

We have obtained the covering radius and described the metric complement of the
punctured code. Let us return to the regular, non-punctured Reed-Muller code
Rm—3. Since it is obtained from the punctured code by adding a parity check bit
at 0-th coordinate, the following result will be of use:

Lemma 4 Let C be a code with the covering radius r and the metric complement
C'. Let Cr be the code obtained from C by adding a parity check bit. Then p(Cr) =
r+ 1 and Cr is obtained from C by
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1. adding a parity check bit to all vectors in case if r is odd or
2. adding a reverse parity check bit to all vectors in case if v is even.

Proof. See Appendix III. a

Using this lemma we can conclude that the covering radius of the non-punctured
Reed-Muller code R,,—3 is equal to m + 2 and its metric complement can be de-
scribed as follows: R

Rm-s= | (m(0),u) + Rin—3).

ucU

Recall that, if fy is the function with the value vector v (non-punctured), then
the set of nonzero columns of the matrix Bye coincides with the support of the
function fy, bar, possibly, the zero vector. Considering also that all vectors in
U have odd weight and added parity check bit corresponds to the value of the
function at the all-zero vector, we can rewrite the metric complement of R,,—3 in
terms of functions instead of their value vectors:

7/?\/7'71—3 - U (f"’Rm—S);
feF

where

F= {f(ﬂ'(u),u) ruc U} = {f : supp(f) = {OaX17X2 s Xmy X1t +Xm},
{x1,...,%xm} are linearly independent}.

It is easy to see that all functions in F' form an equivalence class with respect
to linear equivalence. Let us pick any function f* from this class. We can now say
that a function g is in R, —3 if and only if g = f* o Lo + h for some nonsingular
matrix A and some function h of degree at most m — 3.

Recall that functions f and g are EL-equivalent if there exists a nonsingular
binary matrix A and a function h of degree at most k such that g = f o La +
h. Therefore, g € Rm—s if and only if g ms3 f*, where f* is an arbitrarily
chosen representative of the class F. In fact, since all functions in the metric
complement are equivalent, we can pick any function from Rum_3 as our reference
for equivalence (and we will actively change this reference whenever convenient).
We will call EL™ 3—equivalence just “equivalence” for brevity from now on.

Let us give an explicit (algebraic normal form) description of a certain function
from F. Denote as f* the function with the support {0,e1,e2,...,em, 1}, where
e; is the vector with 1 only in the i-th coordinate. Clearly, f* € F and it is
easy to construct the algebraic normal form of this function: it is the sum of all
monomials containing even number of variables, excluding the monomial with all
variables included:

m_q

frx) =1+ Z Z Ty Tig - - Ligy -

k=1 1<i1 <...<igr<m

This function is equivalent to the sum of all monomials containing m — 2 variables,
so let us use this last function as f* moving forward. Let Z; denote the product
of all m variables except x;, and let Z;z; denote the product of all m variables
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except x; and x;. Using these conventions, we can write this new representative

function as follows:
=Y mm.
1<i<j<m

7.3 Metric regularity

We have established that
= —3 ,x
'R’m—3:{g:gmw f }7

where f* is some function from the class F' (or from ﬁm73), and have presented
a representative. N
Since the code Ry, —3 is linear, it follows [8] that p(Rm—3) = p(Rm—3) = m+2

and a function f is in ﬁm_g if and only if f+ ﬁm_g = ﬁm_g,. With this in mind,
let us prove the metric regularity of R,,—3 by proving that no functions other that
those contained in R,,—3 preserve the metric complement under addition.

Case 1. Let f ¢ Rm—3 be a function of degree greater than m — 2. Since
ELm_B—eguivalence preserves degree of functions with degree higher than m — 3,
any g € Rm—3 has degree m—2, while f+g has higher degree and therefore cannot
be equivalent to any of the functions from R.,—3. Thus, functions of degree greater
than m—2 do not preserve any function from the metric complement and therefore

cannot be in ﬁm_g.
Case 2. Let f ¢ Rm—3 be a function of degree m —2. Let us write it as follows:

fx) =Y mw + h(x),

(4,5)el

where deg(h) < m — 2. Denote as f the quadratic function defined by:

f)= Y mmy.

(4,7)€1

We will call f the quadratic dual of f.
The following result would be of use when handling this case:

Lemma 5 Let f and g be two function of degree m —2. Then f ot g if and only
if their quadratic duals are EL!-equivalent (EA-equivalent).

Proof. See Appendix III. a

It is known that any quadratic boolean function is EA-equivalent to the func-
tion of the form 172 + 324 + ... + Togp_172% for some k < %, and any two
functions of this form with different number of variables are not EA-equivalent
one to the other. Using this result and Lemma 5 we can say that the function f is
equivalent to the function py for some k& (0 < k < %), where

k

Pk(X) = T1iZ2 + T3%4 + ... + Top_102k = g T2i—1%24-
i=1
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Let A be the matrix and h be the function of degree at most m — 3 such that
foLa+h=ps.
Trivially, f* is equivalent to pm. Then foLa+h +pm is equivalent to Pz —k,
which is (by Lemma 5) not equivalent to pz and therefore not equivalent to f *.
Thus, for an arbitrarily chosen function f of degree m — 2 we have found a
function g = (h —|—p%) o Lp-1 from the metric complement R,,—3 such that f +g¢g

is not equivalent to f*. This means that f ¢ Ron—3.

Since all functions which are not in Rn,—3 have degree m — 2 or higher, we
have proven that none of them are in the second metric complement, and therefore
Rm—3 is metrically regular.

8 Reed-Muller codes of order m — 3: Case m is odd
8.1 Covering radius and metric complement of the punctured code

Let the number of variables m be odd. Many arguments for this case are similar
or identical to the ones for the previous case. The following lemma will be of use:

Lemma 6 Let S be a symmetric m x m matriz, where m is odd. Then t(S) < m,
and the equality is achieved if and only if S = BBT for some m x m matriz B
which is either nonsingular, or has rank m — 1 and all columns summing to zero.

Proof. See Appendix II. a
From Lemma 6 we can conclude that, in the case of odd m,

p(Rom—3) = maxt(S) = m,

and a vector v is in the metric complement of R;,_3 if and only if ¢(Sv) = m.
Lemma 6 also describes all minimal factors of all matrices S satisfying ¢(S) =
m. Let

Ui = {u : By has m nonzero columns which are linearly independent}

and

Uz = {u: By has m nonzero columns, m — 1 of which are

linearly independent and the sum of all columns is equal to zero}.

It is easy to see that the set of matrices {Bu|u € Uy U U2} (up to columns
permutations and zero columns removal) includes exactly all minimal factors de-
scribed in the Lemma 6. Thus, if ¢(S) = m for some matrix S, then there ex-
ists a vector u € U such that S = B,BY. Conversely, for any u € U it holds
t(BuB%) = m. Therefore, vectors from the set U cover all cosets contained in the
metric complement RS, _:

50 o
Rm—3 = U u+ Ry, 3.
ucU,UU,
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8.2 Covering radius and metric complement of the non-punctured code

We have obtained the covering radius and described the metric complement of the
punctured code. Let us return to the regular, non-punctured Reed-Muller code
Rm—3. Since it is obtained from punctured code by adding a parity check bit,
using Lemma 4 we can conclude that the covering radius of R,,—3 is equal to
m + 1, and its metric complement is

Rmos= | (r(w)w)+ Ronos.
ucU;uUU,

Recall once again that, if fy is the function with a value vector v (non-
punctured), then the set of nonzero columns of Bye coincides with the support of
the function fv, bar, possibly, the zero vector. Considering also that all vectors in
U; U Uz have odd weight and added parity check bit corresponds to the value of
the function at the all-zero vector, we can rewrite the metric complement of R,,—3
in terms of functions instead of their value vectors:

7/?\/mfi% = U f+Rm737

fEFIUF,

where

Fr = {f(r(uyu) :u€ Ut} =
={f :supp(f) ={0,x1,%x2...,Xm}, {X1,...,Xm} are linearly independent},

and

Fo = {f(x(uw :u€ Uz} =
={f:supp(f) ={0,x1,x2. .., Xm—1,X1 + ... +Xm—1},
{x1,...,Xm—1} are linearly independent}.

It is easy to see that all functions in F} form an equivalence class with respect
to linear equivalence, so do functions in Fs. Let us pick any two functions fi, f5
from these two classes, one from each class. We can now say that a function g is
in Rym—3 if and only if g = f{ o La + h or g = f5 o La + h for some nonsingular
matrix A and some function h of degree not greater than m — 3.

Therefore, g € Rm_3 if and only if g ms? fiorg ms? f5, where fi is an
arbitrarily chosen representative of the class Fy and f5 is an arbitrarily chosen
representative of the class Fy. In fact, we can pick any function from EL™ 3
equivalence class of F] and from EL™ 3—equivalence class of F» respectively as
our references of equivalence fi and f5.

Let us give an explicit (algebraic normal form) description of a certain function
from Fi. Denote as fi the function with the support {0,e1,e2,...,em—1,1}. After
a bit of calculation one can explicitly describe its ANF:

A =Tm+ 0 tam) 1+ ) > TiyTiy - - Tigy,

k=1 1<i1<...<isp<m—1
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This function has degree m — 1 and, omitting terms of degree less than m — 2, is
trivially EL™3—equivalent to the following function which we will use as f; from
now on:

fil =Zm +amf”,
where f*, defined by

f*(xl,l‘Q,...,l'm_l): Z ZTiTj

1<i<j<m—1

is a function of the first m — 1 variables. Moving on we will denote the (m —1)-tuple
of the first m — 1 variables as X. We will also denote affine transforms of the first
m — 1 variables as L} (with matrix and vector of corresponding sizes).

Let us now give an explicit description of a certain function from F>. Denote
m—1
as f3 the function with the support {0,e1,e2,...,em—1, Y, €;}. After a bit of
i=1
calculation one can explicitly describe its ANF:

m—3

fQ*(X):(l‘I’xm) 1+ i: Z Tiy LTig + v - Tigy,

k=1 1< <. <igp<m—1

This function has degree m — 1 and is trivially EL™ 2 equivalent to the function
T f7, which we will use as f3 from now on.

Note that fi =Tm + f3.

Let us build some alternative representatives of the equivalence classes of Fi
and Fy. The following lemma will be helpful:

Lemma 7 Let f = Tm + h, where deg(h) < m—2. Let A be a nonsingular m x m
matriz. Then fo La = Tm + h1 for some h1 of degree at most m — 2 if and only
if matriz A has the following form:

A()mfl
=(00)

where is an all-zero column of length m — 1, A is an arbitrary nonsingular
(m — 1) x (m — 1) matriz and w is an arbitrary row of length m — 1.

Om—l

Proof. See Appendix III. a

This lemma shows us that all linear transformations of the described form,
and only such transformations among all linear, transform functions of the form
Tm + h with deg(h) < m — 1 into functions of the same form, preserving Z,, as
the only monomial of degree m — 1.

Let g be an arbitrary function of degree m — 1 with the highest-degree compo-
nent of the form Z,,:

g =Tm +2ITmg1 + g2,

where g1, g2 do not depend on x,, and deg(g1) < m — 2, deg(g2) < m — 1. Let us
look at the action of a transformation described in the Lemma 7 onto such function
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g. Assume that A is a matrix satisfying conditions of Lemma 7. Discarding terms
of degree less than m — 2, we have:

goLa=Tm+2m(g10Lz)+ gs,

where g3 is some function of degree at most m — 2 which doesn’t depend on the
variable x,.

Let us now build alternative representatives for the metric complement of
Rm—3. Since A can be an arbitrary nonsingular matrix, choosing A so that f* o
L= Pm (Lemma 5) and filling w with zeroes, we can obtain a matrix A such

that

fini=fioLa=Tm+zm(f*oLy)+h =Tm + Tmpu_s + ha.

Here pm-1,hi do not depend on x,, and h; has degree at most m —2. Additionally,
2

fQ*A = f2* oLa = xm(f* o .Z/A) = $mp%

We will use these equivalent functions fi's and f5, as class representatives in some
cases.

8.3 Metric regularity

We have established that
= m—3 ,x m—3 px
Rm-s={g9:9 ~" fitU{g:g9 ~" fa},

where f; is a representative of an EL™ 3 equivalence class of F; and f5 is a
representative of an EL™ 3-equivalence class of F», and have presented some
variants of these representatives. R

Since the code R, —3 is linear, it follows [8] that p(Rm—3) = p(Rm—3) = m+2

and function f is in ﬁm_g if and only if f + ﬁm_g = ﬁm_g. With this in mind,
let us prove the metric regularity of R.,—3 by proving that no functions other that
those contained in R,,_3 preserve the metric complement under addition.

Case 1. Let f ¢ R,—3 be a function of degree greater than m — 1. Since
EL™ 3—equivalence preserves degree of functions with degree higher than m — 3,
any g € ﬁm,;; has degree m—2 or m—1, while f+g has higher degree and therefore
cannot be equivalent to any of the Afunctions from R,,—3. Thus, functions of degree

greater than m — 1 cannot be in ﬁmfg.

Case 2. Let f ¢ Rm—3 be a function of degree m — 1. Any function of degree
m—1 is trivially EL™ 3—equivalent to some function with Z,; as the only monomial
of degree (m — 1), so

fOLB+h:m+$mf1+f2a (1)

for some nonsingular B and function h of degree at most m — 3. Here f1, fo do not
depend on x,,, fi1 is either zero or has degree m — 3, while f> is either zero or has
degree m — 2.
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Case 2.1. If f; in (1) is nonzero, then, using Lemma 7 and Lemma 5, we can
pick such a matrix B and function h of degree at most m — 3 that

foLp+h=Tm+ Tmpr + f3

for some k > 0 and some f3 of degree at most m — 2 (px, f3 do not depend on ., ).
If we now sum f and (f3s +h) o Lg-1 € Rm—3, we obtain a function fT, which is
equivalent to:

m—3 ,x _ m—3 ____
7= f2A+fOLB+h:$m+$m(l7k+pm7*1)+f3 ~ $m+xmp%_k+f47

where f4 is some function of degree at most m — 2, not depending on x,,, and the
last equivalence is just variable renaming.

Let us denote the function on the right of (1) as f™. It has degree m — 1 and
therefore cannot be equivalent to f5. It cannot be equivalent to fi, either, because,
by Lemma 7, any linear transformation of variables with matrix D preserving Tp,,
will act onto it in the following manner:

f¥oLp =m+mm(pm7—1_k OED) + f5,

where f5 is some function of degree at most m —2 in the first m — 1 variables. It is

clear that no matrix D can match the (m—2)-degree parts of f* and f{s containing

variable x,, since pm-1_, is not equivalent to pm—1: . Thus, 1= f4+(fsa+h)oLg
2 2

is not in ﬁm—3; and therefore, if f1 is nonzero, f is not in ﬁm_g.
Case 2.2. If f1 in (1) is equal to zero, we have a couple more cases to study.
Assume that both fi and f2 are zero and thus

foLp+h=2n.

Using transformation z1 — x1 + 2 (and removing terms of degree less than
m — 2), the function f{ = ZTm + zm f* transforms into T, + T1 + T f*.

If we now add f and (Tp + T1 + Tm f* + h) o Lg-1 € Rom—3 we will obtain a
function fT, which is equivalent to:

I T Tt amf + foLlp+h =71+ amf*.

If we swap the variables x1 and x,, in the right-hand side by another linear trans-
formation and regroup terms, we will obtain the following function:

m—1
Tm + E T;T; + E TiTm,

2<i<j<m—1 i=2
which is in turn equivalent to

T + Tmpu_s + Rt

for some h! of degree at most m — 2 in the first m — 1 variables. By Lemma 7
and Lemma 5, this function cannot be equivalent to f{s and it is not equivalent
to f3 by degree comparison. Thus, fT = f + (Zm 4+ Z1 + mf* + h) o L], is not

in ﬁm_g,, and therefore f is not in Ron—3.
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Case 2.3. Assume that fi is zero and f2 is nonzero in (1). Then
foLp+h=7Tn+ fo.

Since f2 doesn’t contain the variable x,,, all terms of fa are of the form T;z,,
for some i. Without loss of generality (swapping variables among first m — 1 if
needed) we can assume that fo contains Ty,—1Zm,. Renaming variables in f5,, we
can transform it into:

T2T3 + TaTs + ... + Tm—1Tm-

If we now add f and the above function, which belongs to Rm_3 we will obtain a
function fT, which is equivalent to:

m—1 m—3

2 2
—3 . .
fT " g TopZokr1+fols+h=0m + E TokTokt+1 + E TiTm
k=1 k=1 i€l

which is equivalent to
T + Tmpmcs + Rt

for some h! of degree at most m — 2 in the first m — 1 variables. By Lemma 7
and Lemma 5, this function cannot be equivalent to fi, and it is not equivalent

m—1

to f3 by degree comparison. Thus, fT = f+ ( i TokTakt1 + h) o Lp-1 is not in
k=1

ﬁm_g, and therefore f is not in Rom—s.

Case 3. If f ¢ R,,—3 is a function of degree m — 2, then, by arguments similar
to the case of even m, f is equivalent to pi (in m variables) for some k£ > 0 using
some nonsingular linear transform L and some addition h of degree at most m — 3.
Then

foL+h+ fia"<° Pmi_ s

and therefore g = ho L™! + f54 o L™! is the function from the metric complement
such that f+ g is inequivalent to both f35 (because mTfl mTfl —k) and f{ (by
degree comparison).

Since all functions which are not in R,,—3 have degree m — 2 or higher, we
have proven that none of them are in the double metric complement, and therefore
Rm—3 is metrically regular.

9 Conclusion

In this paper we have established metric regularity of the RM(1,5) code and of the
codes RM(k,m) for k > m — 3. Factoring in the result by Tokareva [14], which
proves metric regularity of RM(1,m) for even m, we have covered all infinite
families of Reed-Muller codes with known covering radius. The only other Reed-
Muller codes with known covering radius, metric regularity of which has not been
yet established, are RM(1,7), RM(2,6) and RM(2,7). Given these results, we
formulate the following

Conjecture. All Reed-Muller codes RM(k,m) are metrically regular.
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No | Representative f Added g € RM(1,5) | C(g9) | Sumh=f+g C(h)
0 0 — — — —
1 2345 123414425 22 23454-1234144-25 12
2 2345+14 123414425 22 23454123425 ~ 23454123434 8
3 2345424 2345+1234-244-35 14 123435 ~ 123414 21
4 2345+-24+-35 2345+4123+244-35 14 123 19
5 2345414425 123414425 22 2345+123 6
6 2345+123 123414425 22 2345414425 5
7 2345+123412 12434 28 2345+123+4-34 8
8 2345+1234-34 12434 28 23454123412 7
9 2345+1234-14 14425 28 23454123425 ~ 23454123434 8
10 2345+123+45 12+45 28 2345+123+12 7
11 2345+1234-124-34 12434 28 23454123 6
12 23454-123+144-25 123414425 22 2345 1
13 2345+123+12+4-45 12+45 28 2345+123 6
14* | 234541234-244-35 2345+123+244-35 14 0 0
15 2345+123+145 123414425 22 23454-1454+144-25 ~ 23454+123+12+34 | 11
16 2345+1234-1454-45 1234-1454-454-244-35 | 26 23454-244-35 4
17 2345+123+4145+24+45 | 23454+123+24+35 14 145435445 ~ 123414 21
18 2345+1234-145+24+35 | 23454-123+24+35 14 145 ~ 123 19
19 123 2345+123+244-35 14 23454-244-35 4
20 123445 2345+123+4-24+4-35 14 2345424435445 ~ 2345+24+35 4
21 123414 123414425 22 25~ 12 27
22% 123414425 123414425 22 0 0
23 123+145 123+14+25 22 145+14+25 ~ 145425 ~ 123414 21
24 1234145423 23+45 28 1234145445 ~ 1234145423 24
25 1234145424 123415424 22 145415 ~ 123 19
26 1234-1454454-24+435 123+145+445+24+35 | 26 0 0
27 12 12434 28 34~ 12 27
28* 12+34 12+34 28 0 0

Table 1 Table of even weight cosets of RM(1,5) [1]. Classes marked with an asterisk are
those which constitute RM(1,5). C(-) denotes the No of the class the function belongs to.

Appendix I: Metric regularity of RM(1,5)

Theorem 1 The code RM(1,5) is metrically regular.

Proof. It is known [1] that the cosets of the RM(1,5) code can be partitioned into
48 classes with respect to the EA-equivalence. Four of these coset classes contain
coset leaders with the largest attainable weight 12 (classes 14, 22, 26 and 28 in the
Table 1), which proves

p(RM(1,5)) = 12.

Since p(m(l,ﬁ))) = p(RM(1,5)) = 12, the second metric complement of
RM(1,5) can consist only of the cosets with codewords of even weight. There are
29 classes of such cosets, including the RM(1,5) code itself; they are listed in the
Table 1. Classes marked with an asterisk are those which constitute @(1, 5).
These classes were obtained in the work [1] by Berlekamp and Welch. In this work
some of the class representatives were modified from their original variants using
simple variable swaps. Functions in the table are presented in an abbreviated no-
tation: the number ¢142 .. .4 stands for the monomial x;, x;, . .. x;, . For example,
the representative function for the class 14 is xox3raxs + r1x223 + Tox4 + T3T5.

As has been shown in the Section 3, in order to prove that no codeword from

a certain coset class C' belongs to the second metric complement W(l,f)), we
must prove that f + g ¢ 7?/\7(1,5) for some f € C and some g € @(1,5).
The proof can be found in the Table 1: for a representative f from each even
weight coset class we find a function g € W(l, 5) such that f + g is equivalent
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to the representative of some class which is not in 7€M(17 5). Thus, the second

metric complement 7€A\/l(1, 5) contains only the code RM (1, 5) itself, proving that
RM(1,5) is metrically regular.

Almost all equivalences presented in the fifth column of the table are variable
swaps or additions of the form x; — z; + 1, z; — x; + x; or (for the class 20)
T — T + T+ Tk

O

Appendix II: Minimal syndrome matrices

Let us remember Lemma 1, since it is extensively used when proving subsequent
lemmas.

Lemma 1 Let S be a symmetric matriz, and let B be its factor (i.e. BBT = S).
The following operations do not change the property of B being a factor of S:

deleting a zero column;

deleting two equal columns;

swapping any two columns;

adding an arbitrary vector b to each column from some subset of columns of B
of even size, given that all columns of this subset sum to zero.

B oo~

Lemma 2 Let S be a symmetric matriz, and let B be its minimal factor. Then
all proper subsets of columns of B are linearly independent.

Proof. Assume that B has a proper linearly dependent subset of columns which
sum to zero. If this subset has odd number of columns, we make it even by adding
a zero vector to it (and to the matrix B).

Let us denote the matrix comprised of the vectors from this subset as B. Then,
swapping columns if required, the matrix B can be represented as B = (B, D),
where B has even number of columns summing to zero, while D is a nonempty
matrix, consisting of all remaining columns.

Let b' and d* be the first (nonzero) columns of B and D respectively. Let
us add the column bt + d?! to all columns of B — we can do that by Lemma 1,
without changing the property of B being a factor of S. Now the first (nonzero)
columns of B and D are equal, and we can delete them by Lemma 1.

Thus, we have added not more that one zero column to the factor B and then
removed two columns from it. This decreases the number of columns in B, which
contradicts with its minimality. a

Lemma 3 Let S be a symmetric m x m matriz, where m is even. Then t(S) =
m + 1 if and only if S = BBT for some m x (m + 1) matriz B of rank m such
that all its columns sum to zero.

Proof. =

Assume that ¢(S) = m + 1, and B is a minimal factor of S.

If some m-subset of columns of B is not linearly independent, then, by Lemma
2, B cannot be a minimal factor of S. Thus, each m-subset of columns of B is
linearly independent and B has rank m.
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Since B has m + 1 columns of length m, some subset of them must sum to
zero. If all columns of B do not sum to zero, then it must be a proper subset,
which contradicts with the minimality of B by Lemma 2. Therefore all columns
of B sum to zero.

e

Assume that S = BBT, where B is a m x (m + 1) matrix of rank m with of
all its columns summing to 0. It is easy to see that each m-subset of columns of
such B is, in fact, linearly independent. Let us prove that B is a minimal factor
of S.

Assume that ¢(S) = kK < m and D is an arbitrary minimal factor of S with k
columns. Since the sum of all columns of a factor is the vector consisting of the
diagonal elements of S, sum of all columns of D is also equal to zero. This implies
that rank(D) < m, and therefore rank(S) < m, since S = DDT.

This means that there exists a subset of rows in S summing to 0; we denote
these rows as Sj, , Sj,, ..., Sj,. Since S; = BiBT, this implies

(Bi, +...+B;,)BT =0.

Denote b = B;, + ...+ Bj,. From the above it follows that the sum of certain
columns of B (in particular, the columns corresponding to 1’s in the vector b) is
equal to zero.

If the vector b is zero, then rows of B are not linearly independent and
rank(B) < m, contradiction.

If it is nonzero and not an all-ones vector, then we obtain a proper subset of
columns of B which sum to 0, contradiction.

If b is an all-ones vector, then, since m is even, the length of the vector b is
odd and therefore bb™ = 1, which contradicts with (B + ...+ Byx)BT = 0.

Thus, ¢(S) = m + 1 and B is a minimal factor of S.

O

Proposition 1 Let S be a symmetric matriz. Then t(S) = m + 1 if and only if
rank(S) = m and S has an all-zero diagonal.

Proof. —

Let S be a symmetric matrix with ¢(S) = m + 1, and let B be any of its
minimal factors. Assume that rank(S) < m. Then there exists a subset of rows in
S summing to 0; we denote these rows as S;,, Si,, ..., Sip. Since S; = BiBT, this
implies

(Bi, +...+B;, )BT =0.

Denote b = B;, + ...+ Bj,. From the above it follows that the sum of certain
columns of B (in particular, the columns corresponding to ones in the vector b)
is equal to zero.

If the vector b is zero, then rank(B) < m and it must have a linearly dependent
proper subset of columns, hence B is not minimal by Lemma 2.

If it is nonzero and not an all-ones vector, then we obtain a proper subset of
columns of B which sum to 0, hence B is not minimal by Lemma 2.

If b is an all-ones vector, then all columns of B sum to zero.

If m is even, then the number of columns in B is odd and therefore bbT = 1,
which contradicts with (B1 + ...+ Bx)BT = 0.
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If m is odd, then the number of columns in B is even and all rows have even
number of ones, so by Lemma 1, we can add any column of B to all its columns
and then delete a zero column from the result, keeping it a factor of S, which
contradicts the minimality of B.

Thus, rank(S) = m.

Assume that S has a non-zero diagonal. Since the vector consisting of diagonal
elements of S is the sum of all columns of B, all columns of B sum to a non-zero
vector, which means that B must have a proper subset of columns summing to O,
thus contradicting the minimality of B.

«—

Clearly, ¢(S) > rank(S) = m. Let B be a minimal factor of S. Trivially, the
rank of B is also equal to m. Since the diagonal of S is all-zero, all columns of B
sum to zero, hence it cannot have only m columns while having rank m, and must
have at least m + 1. a

Lemma 6 Let S be a symmetric m X m matriz, where m is odd. Then t(S) < m,
and the equality is achieved if and only if S = BBT for some m x m matriz B
which is either nonsingular, or has rank m — 1 and all columns summing to zero.

Proof. As mentioned in the Section 6, ¢(S) is at most m + 1 for any S. Assume
that ¢(S) = m + 1. By Proposition 1, this can only happen if rank(S) = m and S
has all-zero diagonal, which is impossible in the case of odd m (see e.g. [2] p. 249).
Thus #(S) < m.

_—

Assume that ¢(S) = m and let B be a minimal factor of S with m columns.
If the rank of B is smaller than m — 1, then B has a proper subset of columns
summing to zero, contradicting minimality of B, so the rank of a factor must be
at least m — 1. If the rank is m, the proof is finished.

Assume that rank(B) = m — 1. Then some subset of columns of B must sum
to zero. Since B is minimal, it cannot be a proper subset by Lemma 2, therefore
all columns of B must sum to zero.

“«—

Clearly, t(S) > rank(S), so if S = BBT for some nonsingular m x m matrix
B, then the proof is finished.

Let S = BBT for some B of rank m — 1 with all columns summing to zero.

Assume that ¢(S) = k < m—1 and let D be some minimal factor of S. Note that
the sum of all columns of any factor is the vector composed of diagonal elements
of S, so the sum of all columns of D is also zero.

Assume that K = m — 1. Then D has even number of columns, and each row
has even number of ones, so we can add an arbitrary vector to all columns of D
while keeping it a factor of S using Lemma 1. Let us add the first column of D
to all columns of D. Now the first column of D is zero and we can remove it by
Lemma 1. We have now obtained a factor of S with fewer columns than in D,
which contradicts with the minimality of D.

Therefore, kK must be at most m—2. As mentioned before, the sum of all columns
of D is zero, which means that D is not a full-rank matrix. Hence rank(D) is at
most m — 3, which means that rank(S) is at most m — 3 as well.
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Since S = BB, by Sylvester’s inequality we obtain rank(S) > rank(B) +
rank(BT) — m = m — 2. But we have just proved that rank(S) < m — 3, contra-
diction. Thus ¢(S) must be greater than m — 1 and is equal to m.

O

Appendix III: Other results

Lemma 4 Let C be a code with the covering radius r and the metric complement
C. Let Cr be the code obtained from C by adding a parity check bit. Then p(Cr) =
r+ 1 and Cr is obtained from C by

1. adding a parity check bit to all vectors in case if r is odd or
2. adding a reverse parity check bit to all vectors in case if r is even.

Proof. Assume that r is even. Denote

Co = {ce C:wt(c) is even}, C1 = {c € C : wit(c) is odd},

Co = {ce C: wt(c) is even}, Ci = {ce C: wt(c) is odd}.

Due to r being even, vectors from Co are at distance r from Co and at a larger
distance from C7. Similarly, vectors from C are at distance r from Ci and at a
larger distance from Cp. Denote

Cro= {(O,C) c € Co}, Cri1= {(1,(:) c € 01}.

Clearly, Cr = Cr,0 UCr 1.

Let v = (1,¢), where ¢ € Ci. Tt is easy to see that d(v,Cr,1) = d(c,C1) = 7.
Let v = (0, ¢), where ¢ € Cy. It follows that d(v,Cr 1) = d(c,C1) +1=r+1 and
d(v,Cr,0) =d(c,Co) =1+ 1.

Let v = (0,¢), where ¢ € Co. Tt follows that d(v,Cr,0) = d(¢,Co) = r. Let
v = (1,¢), where ¢ € Co. Tt follows that d(v,Cr0) = d(c,Co) +1 =r+ 1 and
d(v,Cr1) =d(c,C1) 27+ 1.

Let v = (¢, ¢), where ¢ ¢ C and € € {0,1}. It follows that d(v,Cx) < d(c, C) +
1<r.

We have examined all possibilities for the vector v and the claim of the Lemma
follows from these examinations.

The case of odd r is similar. O

Lemma 5 Let f and g be two function of degree m —2. Then f ot g if and only
if their quadratic duals are EL! -equivalent (EA-equivalent).

Proof. Since EL™ 3-equivalence allows us to add functions of degree up to m — 3,
we will assume that both f and g contain only monomials of degree m — 2. In
what follows we will discard monomials of degree less than m — 2 when talking
about EL™ 3-equivalence, and we will discard monomials of degree less than 2
when talking about EL'-equivalence.
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Let f(x) = >, Ziz; be the ANF of f. Let us perform the following simple
(4,5)€l
nonsingular linear transformation of variables L;;:

Lo T — x; + x5,
Y T — Tk Vk;éz

Let us inspect how the function f changes under this transformations (disregarding
monomials of degree less than m — 2):

T;Tp — TiT} Vk 75 ’i,

Lij 1Y XTjT — TjTk + TiTk vk 7é (%8
TpT] — Ty Vk,l 7é Zv]

Denote the function obtained after this transformation as f1. Then it is easy to
see that the dual f; is obtained from the dual f (disregarding monomials of degree
less than 2 since we consider EL*-equivalence) by the following linear transforma-
tion:

Tj — 5 + T4,

which is simply the transposed transformation L;;.
Assume now that g is obtained from f using linear transformation L. Then L
can be decomposed into a sequence of simple transformations:

L= Liljl [¢] Lizjz 0...0 Lisjs'

From the above we can see that the dual g is obtained from f using the following
transformation L:
L = Lj,i, 0 Ljyi 0 ... 0 Lj.i,

which is a sequence of transposed simple transformations.

Thus, if f mod g, then f ~ g. The reverse can be proven using similar argu-
ments.
O

Lemma 7 Let f = Ty + h, where deg(h) < m —2. Let A be a nonsingular m x m
matriz. Then f o Lo = Tm + h1 for some h1 of degree at most m — 2 if and only
if matrix A has the following form:

Aomt
=)

where 0™~ is an all-zero column of length m — 1, A is an arbitrary nonsingular
(m —1) x (m — 1) matriz and w is an arbitrary row of length m — 1.

Proof. <—

Trivially, such transformation of the first m — 1 variables keeps T, in f the
only monomial of degree (m — 1), and linear transformation cannot increase the
degree of h.

=
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Assume that foLa is of the form Z,, 4+ h1 for some h; of degree at most m — 2,
as described in the lemma. This means that the change of variables keeps the
monomial Z,, intact and does not produce any other monomials of degree m — 1.
Clearly, the action of this change on the function A is irrelevant, so let us look at
the action on T,,. It is easy to see that the coefficient of the monomial Z; in the
resulting function, obtained after applying transformation A to the variables, is
precisely the value of a (m — 1) x (m — 1) minor, obtained from the matrix A by
removing m-th row and i-th column. So we need matrix A to have all such minors
be equal to zero, except for the last one, obtained by removing the last column.

Let us denote as A', A2 ..., A™ the columns of the matrix A with the last
coordinate removed. Denote as A the (m — 1) x (m — 1) matrix composed of the
first m— 1 of these columns. Then the condition on the minors can be reformulated
as follows: sets of vectors {A', ..., A""1 A" A™} are linearly dependent for
all i £ m, while A is nonsingular. This implies that the following set of equations
holds:

A™ 4 > b17jAj =0
j<m—1
A™ 4+ Z b2,jAj =0

j<m—1
A™ 4+ 3 bmo1 A =0
j<m—1

where B = (b; ;) is some (m—1) x (m—1) matrix with b; ; = 0 for all 4. If we denote
rows of the matrix B as B;, then we can rewrite this in the following manner:

A.-BT =A™
A.-BY =A™
A'B%—;,lem

Since A is nonsingular, the solution to each equation (which is a system of equa-
tions on b; ;’s for i-th row) is unique and hence By = B2 = ... = By—1. Since
b;i = 0, the matrix B is a zero matrix, which leads to A”™ = 0. This implies
that the last column of A can have 1 only in the last coordinate, and because A is
nonsingular, this must be the case. Thus, A is of the form stated in the lemma. O
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functions
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Abstract Boolean bent functions were introduced by Rothaus (1976) as combina-
torial objects related to difference sets, and have since enjoyed a great popularity in
symmetric cryptography and low correlation sequence design. In this paper connections
between classical Boolean bent functions, generalized Boolean bent functions (Schmidt,
2007) and quaternary bent functions (Kumar, Scholtz, Welch, 1985) are studied. We
also study Gray images of bent functions and notions of generalized nonlinearity for
functions that are relevant to generalized linear cryptanalysis.
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1 Introduction

Boolean bent functions were introduced by Rothaus [25] as combinatorial objects re-
lated to difference sets, and have since enjoyed a great popularity in symmetric cryp-
tography and sequence design. They are, in particular, maps from Z3 to Zy with some
special spectral properties. Their importance in symmetric cryptography stems from
linear cryptanalysis of stream ciphers [17-19]. In that context bent functions are the
ones which are the worst approximated by affine functions, or, equivalently have the
best possible nonlinearity. More information concerning bent functions can be found in
monograph of Mesnager [21]. Several researchers [3,7,22,23] have explored extensions
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of linear cryptanalysis to groups other than the usual elementary abelian 2-groups. In
this paper we study a notion of nonlinearity that seems consistent with their notions.
We discuss the connection between two notions of Z4-bentness introduced from a se-
quence design viewpoint (for applications in CDMA systems) and the classical notion
of bent function.

The first approach is to consider functions from Zg to Zg, q is any integer, see
the paper [11] of Kumar, Scholtz and Welch. We call them ¢g-ary functions. Another,
more recent approach, which is more natural from the viewpoint of cyclic codes over
rings is to consider functions from Z%5 to Zg. This is the approach of Schmidt in [26].
We call these latter functions generalized Boolean functions. In this paper we focus
on the quaternary case (¢ = 4), and explore the interplay between the three types of
definitions for bentness.

Let us note that there exist other ways to generalize the concept of bent function.
For example, to study bent functions on a finite abelian group [13,31] (later these
results were rediscovered in [4]), etc. See a survey of distinct generalizations in [34] and
[35].

The material is organized as follows. Necessary definitions are given in section 2.
In section 3 we prove that a generalized Boolean function f(z,y) = a(z,y) + 2b(z,y)
is bent if and only if Boolean functions b and a & b are both bent. Section 4 shows that
there is no direct link between notions of Boolean and quaternary bent functions but we
obtain several facts related to bent Boolean and quaternary functions. There is no direct
connection between notions of quaternary and generalized bent functions either, which
is shown in section 5. Then in section 6 we show that quaternary generalized Boolean
bent functions in n variables yield Boolean bent functions by Gray map, or semi bent
functions, depending on the parity of n. Section 7 characterizes bent functions by their
nonlinearity. Section 8.1 illustrates our results by a survey of the known constructions
of generalized bent functions and their Gray images. In section 8.2 we introduce two
simple constructions for quaternary bent functions.

Note that a variant of this paper appeared at ePrint archive [29] already in 2009 (see
also [30]) but it included an incorrect result about the connection between quaternary
and Boolean bent functions (see Lemma 33 and Theorem 34 in [29]). That is why
that variant of the paper was unpublished till now although it aroused an interest
between specialists. In this paper we correct that mistake and offer new results related
to quaternary and Boolean bent functions. After appearence [29] at ePrint archive
several related results were obtained by different authors. Thus, Stinicd et al. [32]
extended the results of [29] related to generalized Boolean bent functions by considering
functions from Z% to Zg. Later the results were extended for functions from Z3 to Zig
by Martinsen et al. [15]. Finally, HodZzi¢ et al. [9] gave a complete characterization of
generalized bent functions from Z%5 to Zgx for k > 1 in terms of both the necessary
and sufficient conditions their component Boolean functions need to satisfy. Two open
problems that were mentioned in the original paper [29] were solved. More specifically,
in [32] the quaternary analogue of Dillon’s construction was presented. Then Li et all.
[12] characterized the functions in n variables of the form f(x) = Tr(ax + 2ba:1+2k) for
odd n/ged(n/k). The results obtained in the original paper [29] were instrumental in
the following works [5,6,12,20,24]. The original paper [29] was also mentioned in [16,
28,33]. It remains to note that the present paper contains new results on connections
between Boolean, generalized Boolean and quaternary bent functions that were not
presented in [29].
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2 Definitions and Notation

In what follows by @ we mean addition over Zg (modulo 2). We will use + for two
types of addition: over Z4 and natural one. It always depends on the context.
We will also use the following two types of inner product:

(a:,y) =21Y1 D ... ® TnYn,

r.Y =T1Y1 + ... + TnYn.

Let n, ¢ be integers, ¢ > 2.
We consider the following mappings:

1) f : Z5 — Z2 — Boolean function in n variables. Its sign function is F :=
(—=1)7. The Walsh Hadamard transform (WHT) of f is

ﬁ(x) — Z( )f(y ®(z,y) Z Fy( my). (1)

yezy yezy

A Boolean function f is said to be bent, iff |ﬁ(x)| =2"2 for all x € ZY. It is semi
bent iff I?(x) € {o, :|:2("+1)/2} (sometimes such functions are called near bent). This
is a partial case of plateaued functions [36]. Note that Boolean bent (resp. semi bent)
functions exist only if the number of variables, n, is even (resp. odd).

2) f : Z5 — Zq — generalized Boolean function in n variables. Its sign function
is F := wf, with w a primitive complex root of unity of order g, i. e. w = ¢2™/9. When
q = 4, we write w = 1. Its WHT is given as

a 7)== Z wf(y)( (z,y Z Fy( (zy) (2)

yeZ yezy

As above, a generalized Boolean function f is bent, iff |ﬁ($ﬂ)| =2"2 forallz € Zy. In
comparison to the previous case it does not follow that n should be even if f is bent.
Such functions for ¢ = 4 were studied by K.-U. Schmidt (2006) in his paper [26]. Here
we consider only this partial case ¢ = 4.

3) f:Zy — Zq — g-ary function in n variables. Its sign function is given by
F :=wl asin the previous case. Its WHT is defined by

)= Z @ tzy _ Z Fyw™Y. (3)

yELyY yeLY

Here + and z.y are addition and inner product over Zy. Note that the matrix of this
transform is no longer a Sylvester type Hadamard matrix as in the previous case,
but a generalized (complex) Hadamard matrix. A g-ary function f is called bent, iff
|ﬁ(x)\ =q"? forall x € Zg . Notice that again it does not follow from the definition
that g-ary bent functions do not exist if n is odd. P. V. Kumar, R. A. Scholtz and
L. R. Welch [11] have studied g-ary bent functions in 1985. They proved that such
functions exist for any even n and g # 2(mod 4). Later S. V. Agievich [1] proposed an
approach to describe regular g-ary bent functions in terms of bent rectangles. If ¢ = 4
we call f a quaternary function. Here we study such functions only. Note that in
1994 A. S. Ambrosimov [2] studied another type of g-ary bent functions defined over
the finite field.
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A bent function f : Zg — Zgq is called regular if each of its Walsh Hadamard
coefficients can be expressed as

Pz) = ¢"/2w ")

for every z € Zg and some g-ary function h. From [11] it is known that for quaternary
(¢ = 4) case all bent functions are regular.

3 Connections between Boolean and generalized Boolean bent functions

Let f : Z%n — Z4 be any generalized Boolean function. Represent it as f(z,y) =
a(z,y) + 2b(z,y), for any z,y € Z5 where a,b : Z%” — Zo are Boolean functions. In
this section we study connection between properties of bentness of generalized Boolean
and Boolean functions.

Here and further by A- B we mean WHT of a & b. It is natural, since A- B =
(—l)a@b. In this section and in what follows by x.y we mean inner product over Zg4:

.Yy = 21Y1 + ... + Tnyn mod4.

Lemma 31 Between Walsh Hadamard transforms of f, a @ b, b there is the relation
—~ 9 1 /=9 —2
P,y =5 (B @)+ 4B (2,9).

Proof Study the Walsh Hadamard Transform of f. According to (2) we have

ﬁ(w,y) — Z (_1)<w~1'>@(y'y/>@b($/7y/) jo@’ )

! !

1+(2_1)S + 1_(2_1)51' for s = a(z’,y’) we get

Applying the formula i° =
~ 1/~ — i/~ —
Fa,y) =5 (B + A B@,y) + 5 (B, - A Ba,y))

From this we directly get what we need. (|

Note that Lemma 31 holds for any (not only even) number of variables of the
function f.

Theorem 32 The following statements are equivalent:
(i) the generalized Boolean function f is bent in 2n variables;
(i) the Boolean functions of 2n variables b and a ® b are both bent.

~ ~ 2
Proof By Lemma 31 we have |F(x,y)> = % (BQ(w,y) +A-B (w,y)) .If a®band
b are bent functions then |F(z,y)|> = %(22" +227) = 22" and f is a bent function.

~ —2
Conversely, if f is bent, then it holds B?(x,y) + A- B (z,y) = 22" "1, Since WHT
coefficients of a Boolean function are integer, this equality has the unique solution
~ —2
B%(z,y) = A-B (z,y) = 22" (see [10] for detail). So, functions a & b and b are
bent. O

Note that there are some intersections between Lemma 31, the part (i)—(ii) of
Theorem 32 and results of the last version of [26].

120



4 Connections between Boolean and quaternary bent functions

Define a quaternary function g : ZJ} — Zy4 as g(z+2y) = a(z,y)+2b(x,y), for any z,y €
7% where a,b : Z3" — 7 are Boolean functions. In this section we study connection
between properties of bentness of quaternary and Boolean functions.

4.1 Preliminaries and necessary statements

In this section we present several facts that will be instrumental in what follows.
Lemma 41 Let z,y € Z5. If v.y # (z,y) then .y = (z,y) + 2.

Proof There are four possible values for z.y: 0,1,2 and 3. For .y = 0 or 1 it is obvious
that z.y = (x,y). For two remaning cases we have

zy=2—=(z,y)=0— z.y = (z,9) + 2,

zy=3—-(r,y)=1—zy=(z,y +2

The following fact is well known for Boolean functions.

Lemma 42 Let f be a linear Boolean function in n wvariables. Then there are two
possible values of Walsh Hadamard coefficients of f: 0 and 2".

Proof Any linear Boolean function f in n variables can be represented as f(z) = (a, x)
for a € Z%. Therefore, by (1)

ﬁ(w) _ Z (_1)(%9)@(%@ _ Z (_1)(0@:871;).
YELy YyELR
Using the well-known fact that
S (g [2re=
ot 0, otherwise.
2
the result follows. O

Proposition 43 (see, for instance, [35]) All quadratic Boolean functions in two vari-
ables, i.e. f: Z% — Za such that f(z,y) = xy ® ¢, where x,y,c € Za, are bent.

Proposition 44 (Rothaus, [25]) Let n > 4 and even. Then degree of a Boolean bent
function f in n variables is not more than n/2.

Proposition 45 (Rothaus, [25]) Let x € 75 and y € 75, where v,k > 2 and even. A
Boolean function f(z,y) = fi(z) ® f2(y) is a bent function in r + k variables if and
only if the functions f1 and fo are bent functions in r and k variables respectively.

Proposition 46 (Singh et al, [27]) Let x € Z and y € 7% for v,k > 1. A quaternary
function g(xz,y) = g1(z) ® g2(y) is a bent function in r + k variables if and only if
functions g1 and go are quaternary bent functions in r and k variables.

Note that results of Propositions 45 and 46 can be easily extended to sums with
more than two functions.

121



Number of quaternary bent functions

Cases for b and a @ b Types of a in the case For each type of a | Total in the case

a is a bent function 49152

are noﬁlﬁﬁgaf fnﬁc tions |15 a Tinear function 3072 147456
a is a nonliear function 95232
a is a bent function 16384

band a® b a is a linear 2304 53248

are bent functions a is a constant 768

a is a nonlinear function 33792

Table 1: Classification of functions b and a @ b for quaternary bent functions in 2 variables.

4.2 Quaternary bent functions in small number of variables

Here we present results on connections between notions of quaternary bent functions
in one and two variables and Boolean bent functions. Using computer search we obtain
the following facts.

Lemma 47 For every quaternary function g(z+2y) = a(z,y)+20b(z,y) in one variable
with x,y € Za it is true that g is a quaternary bent function if and only if b is a bent
function and a does not depend on y, i.e. a(z,y) =0, 1, x or x & 1. Moreover, if g is
a bent function then b and a @ b are bent functions too.

Computer search shows that the number of quaternary bent functions in one vari-
able is equal to 32.

There are 200704 quaternary bent functions in 2 variables. Among them there are
98304 fuctions such that none of Boolean functions a,b and a @ b is a bent function
but for 3072 of them a is a linear Boolean function. There are 36864 quaternary bent
functions such that b and a @ b are bent functions, while for 33792 of them a is a
nonlinear function, and for 2304 and 768 functions a is a linear function or constant
respectively. The number of quaternary bent functions in 2 variables with each of a,b
and a @ b being a bent function is equal to 16384. For the remaining 49152 quaternary
functions, a is a bent function and b and a @ b are nonlinear Boolean functions.

We summarize the data described above in Table 1.

For functions in three and more variables an exhaustive search is not feasible (there

are 2128 quaternary functions in three variables).

4.3 Possibilities for bentness

From Lemma 47 we know that if ¢g is quaternary bent then b and a®b are bent functions
too. In the previous section we showed that it does not hold for quaternary functions
in 2 variables. Let us prove that it does not hold for arbitrary n > 2.

Proposition 48 For every n > 2 there exists a quaternary bent function g(x + 2y) =
a(z,y) + 2b(x,y) in n variables, with b and a ® b being not bent in 2n variables.

Proof In what follows, "+’ denotes the addition over Z4 excepting summation of indices.
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Any quaternary function g in n variables can be uniquely represented as follows
g(x1 + 2Tp41, s Tn + 2x2n) = a(x1, ..., T2p) + 2b(x1, ..., T2p).

Let

n

b(@1, .. 02n) = D Tiign ® 212012 © 2011 O T1T2T041,
=3

a(z1,..,T2n) = T1Tp+1-
One can see that b can be divided into sum of n — 2 Boolean functions in two variables
and one Boolean function in four variables
b(x1,...,x2n) = b1 (21,2, Tny1, Tni2) ® b2(23, Tny3) @ ... © bp—1(Tn, T2n),
b1 (21,22, Tny1, Tni2) = T1Tn42 O T2Tn1 @ T1T2Tn41,
bi (T34 1, Tntitl) = Tit1Tntitl, o= 2,...,mn— L

From Proposition 45 we know that b is bent if and only if all b; are bent. According to
Proposition 44 we get that function by in four variables is not bent because its degree
is equal to three. Therefore, b is not bent.

It is easy to check that it holds

2b(z1, .., Zan) = (223Tn+43 + ... + 2TnTon) + 221Tn42 + 202Tp4+1 + 22122T141-

Moreover, g can be divided into sum of n — 2 quaternary functions in one variable and
one quaternary function in two variables

g(x1 + 22041, . Tn + 222,) = g1(21 + 22041, 22 + 2Ty 2)+
+92(23 + 22n43) + .. + gn—1(zn + 2220),
where
91(21 4+ 2Tp 1,02 + 2254 2) = T1Tp41 + 201802 + 2222011 + 221220041,

9i(Tip1 + 2Tppiq1) = 241 Tppiql, 8= 2,...,n — L.

From Proposition 43 we know that all z;41,Zn+4+1 are bent, ¢ = 2,...,n. Therefore,
according to Lemma 47 functions g; are quaternary bent functions, ¢ = 2,...,n — 1. It
was checked that the quaternary function g; is also bent according to the definition:
its WHT coefficients are the following:

wez? || 00 [ o1 [ 02 | 03 | 10| 11 | 12 | 13 | 20 | 21 22 | 23 | 30 | 31 32 | 33
G1 () 4 4i 4 4 4 4i | -4 | a4 4 —4i | 4 —4 | a4 —4i | -4 | —a

From Proposition 46 we know that ¢ is a quaternary bent function if and only if
all g; are quaternary bent functions, ¢ = 1,...,n — 1. This completes the proof. O

The next result shows that the bentness of a quaternary function does not follow
from bentness of Boolean functions in general.

Proposition 49 For every n > 1 there exists a quaternary function g(x + 2y) =
a(z,y) + 2b(x,y) in n variables that is not bent, while b and a ® b are Boolean bent
functions in 2n variables.
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Proof Any quaternary function g in n variables can be uniquely represented as follows
g(x1 + 2Tp41, s Tn + 2T2n) = a(x1, ..., T2p) + 2b(x1, ..., T2p)-
Let

n
b(l']_, (X3} 'Z.Qn) = @ TiTi4n,
i=1

a(x1, .., Tan) = Tp+1-

It is easy to check that 2b(x1, .., z2pn) = 221Tp+1 + ... + 22nT2,. One can see that
g can be divided into sum of n quaternary functions in one variable

9(x1 + 2Tp41, s Tn + 222n) = g1(x1 + 220n41) + - + gn(Tn + 2z2y),

where
9i (@i + 2xp4) = ai (x4, Tpys) + 20 (x4, Tpyy), i=1,..,m,
bi(Tiy Tri) = TiTppi, 1= 1,.,m,
a1 (21, Tn+1) = Tntl,
a;i(zi, Tpyi) =0, 1 =2,..,n.

From Proposition 46 we know that g is a quaternary bent function if and only if all g;
are quaternary bent functions, ¢ = 1,...,n. From Lemma 47 and by the choice of a and
b we get that g1 is not quaternary bent. This completes the proof. O

From Propositions 48 and 49 we conclude that there is no direct link between
notions of Boolean and quaternary bent functions. Additionally, Proposition 48 shows
that if b and a @ b are not bent it does not imply that g is not bent. According to
Proposition 49 it is also true that if g is not bent it does not imply that b and a & b
are not bent.

From the previous section we can see that for quaternary bent functions in one and
two variables a Boolean function b is bent if and only if a ® b is also bent. Whether
this statement is true for arbitrary n remains an open problem.

4.4 Nonlinearity of component Boolean functions

Let g(z+2y) = a(z, y)+2b(z,y) be a quaternary function in n variabes, where z,y € Z%
and a, b are Boolean functions in 2n variables.

Let us represent WHT coefficients of quaternary functions in terms of the coeffi-
cients of Bogl@n functions b and a @ b as we did for generalized functions in section
4. Here by A - B we mean the WHT of a @ b.

Lemma 410 Between the WHT coefficients of g, a & b, b there is the relation

~ 1 ~ —
Gz +2y) = 5 (B(:c@yﬂc) +A-B(y,z) —2cp(x Dy, x) — QCa@b(y7$U)) +

+5 (Bl.2) - A- B © y,2) — 2¢5(y,2) + 2 0gp(c © 3,2) )

|

with
Z (_1)f(x/,y/)@<(u,m),(x/,y/))7

eV, y'

crlu,x) =

where f is a Boolean function in 2n variables, u € Z5, and Vy = { o’ | (z,2') # z.2’ }.
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Proof Study the Walsh Hadamard Transform of g. By (3) we know that
Gz +2y) = Z ; @ +2y). (&' +2y ) a2’ y") +2b(a" y')
zl,y/

From Lemma 41 and the fact that for any =/, 2"’ € Z% it holds 2(z”, 2"y = 22" .2""
we have

(z,2) 4+ 2{x,y) + 2(y, z), if v.a’ = {(z,z'),

(@+2y).(2" +2y) = { (x,2') + 2(x,y) + 2(y,2') + 2, if x.2' # (z,2').

Let Uy = { o' € ZY |22’ = (z,2') } and Vp = { 2’ € Z§ |z.2’ # (x,2') }. Therefore,
we get Uz NVy = @ and Uz UV, = Z5. Note that |Ug| # |Vz| in general. Then

Gatog)= Y (~1)les 8@ s); e ol o)
x€Uz,y’

Z (_1)<w’y/>@<y>aj/>@b($/vy/)i <1>I/>+a(aj/vy/)‘
' eVy,y’

Here we use the standard maps 3, : Z4 — Zo defined as
£:0,1 >0and 8:2,3 — 1;
v:0,2—=0and vy:1,3 = 1.

For any t € Z4 it holds

—_1)7(®) —(=1)®
z‘t:(—l)ﬁ(”(H(?l) +1 (21) 2)

Using this formula for ¢t = z.2’ + a(z’,y’) and the fact that v((z,z’) + a(z’,y')) =
(z,2") @ a(z’,y) we get

. .
G($+2y):5(51+52*53*54)+%(S1752753+S4),

where
Sy = Z (_1)17(93 W)@y ) ®(y,z" ) ©B((z,2") +alz,y"))

o' €Uy ,
Sy = Z (,1)a(fﬂ/,y/)éBb(r’,y’)@(my’)@(y,z’>@<zyr’>®ﬁ((mvr’)+a(r’,y’))7
' €Uy,y’
S3= > (—1)P@ W)@y ) Oly,2) OB (w,2) +a(a ")
z'€Vy,y’
Sy = Z (—1)2@ ¥ y) By YO (ya) w2’ OB (z,2") +a(z' "))
@ EVay!

Let M5, = {2’ € Z4 |(z,2’) = 6 } for § € Zy. Note that My, U My, = Z% and
|Mo,o| = |M1z] = 271 Let us divide every sum S7,S3,53 and Sy into two sums
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, , and , ,. Note that B(a(z’,y) + (x,2)) is equal to 0 or a(z’,y’
z'€Mo, z,Y z' €My, 2,y

for o’ € My, and e M, respectively. Thus, we have

Sy = Z (_1)17(96 WSy ) Bly,a’) |
@/ €U,NMo,0,y’
+ Z (_1)b(w',y')EB(I,y')@(y,w/)@a(w’,y’)’
r’eUNM1 2.y’
Sy = Z (—1)*(@¥)Sb(y )& (2 ) S ly,2 ) Slwa’) |
' €U, NMo, 2y’
+ Z (_1)@(96’»y')®b(x/7y/)®<x,y/>®(y7x’>®<$,x’>€9a(aﬁ’7y’)7
' €U NM1 2,y
Sy = Z (—1)PE W& (@) 4
' €VeNMo,z,y’
+ Z (—1)P@ )8y ) O y2 ) Balz’ ")
' eVoNMi .,y
Sy = Z (_1)‘1(1 Y)®b("y ),y ) Sly,a ) Blw,a’) |
' €VaNMo,z,y’
+ Z (_1)a(3f/7y’)€9b(x’»y’)GB(xvy’)@<y,x/>®(w7x’>a(x/,y/).

' €VeNMy o,y

After grouping terms we obtain
S1+85—53—-54=
Z (,1)b(03'vy')@(xvy'>®<y@'>@<r@'>+

@' €U,y
+ Z (,1)b(m’7y’)@a(r’7y’)®<ryy’>@<y»x’>7
' €Uy,y’

_ Z (,1)b(m’»y’)ﬂﬂw,y’)@(yyr’>€9<r,z'>7
' €Va,y'
_ Z (,1)b(x’7y’)@a(fr"y’)EB@,y’)@(y’z’),
' EVy,y’
Then

S1— 82 — 83+ 54 =
- Z (—1)y)By)Olya’)

@' €U,y
_ Z (,1)b(r’,y’)®a(r’>y’)®<w,y’>®(yyr’>€9<r,r’>7
2/ €U,y

_ Z (—1)b Y8y )& ya’) |
' €Vy,y'
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+ Z (_1)b(z',y’)@a(aj’,y’)@(z,y’}@(y,m/>@<x,r'>.
' €Vy,y'

Since o o
Cf(u, J}') = Z (_1)f($ Y )@((u,a:),(z Y ))7
z'eVy,y'

where f is a Boolean function in 2n variables and u € Z3, then one can see that
S1+S2—853—854 =

= (B(CL' @yax) - Cb(ZC 2] yax)) + (A : B(y,fl?) - Ca@b(y7$)) - Cb(fL' 2] yax) - ca@b(y,x)
and
Sl_SQ_Sg+S4:

= (B(y7 1’) - Cb(y7 33)) - (A : B(m Dy, x) - Ca@b(x S y7m)) - Cb(y, 1’) + Ca,@b(m Dy, LE)
After rearranging, the result follows. (]

We can see that WHT coefficients of a quaternary function g do not directly depend
on WHT coefficients of Boolean functions b and a @ b. This result will not be useful in
studying connection between bentness of quaternary and Boolean functions but it will
be instrumental for the next result and also in section 8.2.

Theorem 411 Let g(x + 2y) = a(x,y) + 2b(z,y) be a quaternary bent function with
z,y € Z5 and a,b be Boolean functions in 2n variables. Then b and a®b are nonlinear
functions for anyn > 1.

Proof According to Lemma 42 there are two possible values of Walsh Hadamard coef-
ficients of a linear Boolean function in 2n variables: 0 and 22"
From Lemma 410 we get that

-~

1 ~ — )~ — n
G(2y) = 5(B(y,0) + A~ B(y,0)) + 5 (B(y,0) ~ A~ B(y,0)), wherey € Z§.

Note that the reason why there are no coefficients ¢y (x @y, ), ¢4 (y, ), Cqgp(x D Y, )
and ¢ g (y, z) is because the set Vi is empty for z = 0.

As it was mentioned in section 2 all quaternary bent functions are regular. It means
that there is only real or imaginary part of a(Qy). Thus, we get that there are two
possible cases

(B(y,0)+ A B(y,0)* =0,
(B(y,0) — A- B(y,0))2 = 4- 4™

or

(B(y,0) + A~ B(y,0))* =447,
B
From the first system we get

I
~

B(y,0) = —A- B(y,0),
(2- B(y,0))? =4- B(y,0)? = 4- 4"

Hence,

~

B(y,0) = —A- B(y,0) = +2".

By solving the second system one can get

~

B(y,0) = A~ B(y,0) = +2".

Therefore, b and a @ b are nonlinear functions. O
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5 Connections between quaternary and generalized Boolean bent functions

Let g(xz + 2y) = f(z,y), where g : Z} — Zy, [ : Z5 — Z4 and z,y € Z5.
In this section we will show that approach of Kumar et al and that of Schmidt are
not equivalent.

Proposition 51 For every n > 1 there exists a generalized bent function f(z,y) in 2n
variables such that a quaternary function g(x+2y) in n variables defined as g(x+2y) =
f(z,y) for all x,y € Z3 is not bent.

Proof From Proposition 49 there exists a quaternary function g(z + 2y) = a(z,y) +
2b(z,y) which is not bent, while b and a @ b are both bent.

Now from Theorem 32 we know that if b and a @ b are both bent then f(z,y) is a
generalized bent function. O

Proposition 52 For every n > 2 there exists a quaternary bent function g(x + 2y) in
n variables such that a generalized function f(xz,y) in 2n variables defined as f(x,y) =
g(x + 2y) for all x,y € Z5 1is not bent.

Proof From Proposition 48 for n > 1 there exists a quaternary bent function g(z+2y) =
a(z,y) + 2b(z,y) in n variables such that b and a @ b are both not bent.

From Theorem 32 we know that generalized function f(z,y) is bent iff b and a ® b
are both bent. Hence, f(z,y) is not bent. O

6 Gray images of bent functions

Let f be a generalized Boolean function from Z5 to Z4. Write f = a + 2b with a,b
Boolean functions in n variables. Its Gray map ¢(f) is the Boolean function in variables
(z,z) with © € Z5 and z € Zg defined as a(x)z + b(z). The proof of the next result is
implicit in the proof of [26, Th. 3.5] and is omitted.

Proposition 61 For the WHTs of functions f and ¢(f) it holds
B(f)(u,v) = 2RV F(u)) = B(u) + (—1)"A- B(u), where u € Z5 v € Zy.  (4)

Here R denotes real part of a complex number. As far as the left side of equation (4)
is a WHT coefficient of a Boolean function, we easily get

Corollary 62 For any generalized Boolean function f in n variables it holds

max RV F(u))| =20 1/2,
uE€Ly  WELy
Corollary 63 If f is bent in n variables then ¢(f) is either bent (n odd) or semi bent
(n even).

Proof Write F\(u) = X +4Y with X,Y integers. We know that 2" = X2 + Y2, We
know that the solution to that diophantine equation in X > 0 and X > Y > 0 is
unique, see e.g. [10]. The obvious solutions for n odd are {|X| = |Y| = 2(»~1/2},
{Y =0, X =+2"2} and {Y = +2"/2, X = 0} for n even.

Thus, if n is odd it holds Q?(f\)(u,v) = +2("+t1/2 for all u, v, and hence o(f) is
bent in n 4 1 variables. If n is even we see that Q?(T)(u,v) equals 0 or :I:2<n+2)/27 S0
@(f) is semi bent in n + 1 variables. O
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There is a partial converse to Corollary 63. The proof is immediate.

Proposition 64 Let n be odd. If ¢(f) is a Boolean bent function in n + 1 variables
then f is a generalized Boolean bent function in n variables.

This fact has also been obtained in the last variant of [26].

7 Notions of nonlinearity

It is well-known that Boolean bent functions are characterized by their maximal dis-
tance to the first order Reed Muller code. This fact is generalized in this section to
their quaternary analogues.

7.1 Generalized Boolean functions

Let RM(r, k) be the Reed Muller code of length 2¥ and of order r, see [14]. Define,
for 0 < r < m the quaternary code ZRM (r,m) = ¢~ L(RM(r,m + 1)). This code is
spanned by vectors of values for functions of degree at most r — 1 together with twice
functions of degree at most r, see [8] for detail. We introduce the nonlinearity N(f)
of a generalized bent Boolean function f in n variables as

1 —_—

N(f):=2" |2(f)(u, v)]. ()

— -  max

2 ueZy weLs

We denote by dr(-,-) the Lee distance on ZY. Analogously, let dg(-,-) be the
Hamming distance on Z%N . According to Corollary 62 we have

Proposition 71 For any generalized Boolean function f in n wvariables it is true
N(f) <" 2(7171)/2'

Proposition 72 With the above notation, for any generalized Boolean function in n
variables f we have

N(f) = do(f, ZRM(1,n)) = dp (2(f), RM(1,n + 1)).

Proof Let z, y be arbitrary vectors of ZJ . Denote by i® the vector (i*!,...,i"N).
Recall first the well-known identities

N
dZE(ZZ,zy) = QdL(ZU,y) = 2(N _ %(Z iazjfyj))7
=1

where dg stands for the Euclidean distance. Observe that ZRM (1,n) is spanned by
the all-one vector, along with twice the binary linear functions, and that F(u) =

> i/ (1)+2u-Y The second equality holds by the isometry property of the Gray map
yELy
[8]. O

Hence, using Propositions 71 and 72 we can reformulate one partial case from
Corollary 63 and Proposition 64 as follows.
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Corollary 73 Let n be odd. A function f is bent if and only if N(f) attains the
mazimal possible value 2" — 2("=1)/2,

The case of even n is more complicated. We have

Corollary 74 Let n be even. If a function f is bent then N(f) =2" — on/2,

Proof By Corollary 63 the Boolean function ¢(f) is semi bent in n+ 1 variables. Hence

the maximum value of |QT(f\)(u7 v)| is equal to 2("+2)/2 Then by Proposition 61 and

definition (5) we get N(f) = 2" —2"/2, 0

The converse statement is not right in general as far as from the equality

) _ o(n+2)/2
B, |P(f)(u,v)]

it does not follow that |ﬁ(u)| =22 for any u € Z35. Actually, it is not clear what is
the maximum possible value of N(f) if n is even. To know it one should find the value
of covering radius of the code RM(1,n + 1) when n + 1 is odd. But it is a hard old
problem without analogy to the easy case of even n + 1.

7.2 Quaternary functions

Let g be a quaternary function in n variables. In this case, an immediate reduction to
the preceding subsection (namely, passing from g to f in the notations of section 5)
yields the definition

L max  [0(g) (v, w)]

N T
(g) 2 w,VELY WwEL2

The following analogue of Proposition 72 is immediate.

Proposition 75 For any quaternary function g in n variables we have
N(g) =dr(g, ZRM(1,2n)) = dg(4(g), RM(1,2n +1)).

In particular if g is bent then N(g) = 22" _ 9™ As it was mentioned above the maximal
possible value of N(g) is not determined yet.

8 Examples of Constructions

The degree of a generalized Boolean function f denoted by deg(f) is understood in
the sense of its algebraic normal form (ANF). For computing degrees we require the
following lemma.

Lemma 81 For a generalized Boolean function f the degree of ¢(f) is at most the
degree of f.

Proof Follows by definition of the ZRM (r,m) code by its generators [§]. O
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8.1 Generalized Boolean bent functions

In [26, Th. 4.3] figures a natural generalization of the classical Maiorana McFarland
construction.

Proposition 82 (Schmidt, [26]) The generalized Boolean function f in 2n variables
defined for x,y in 7% by

flz,y) =2z.7(y) +7(y),
with T an arbitrary gemeralized Boolean function in n wvariables and © an arbitrary
permutation of Z5 is bent.

By Corollary 63 the Gray map of this function is a binary Boolean semi bent
function in 2n + 1 variables. By Lemma 81 its degree is max(2, deg(7)).

It is well-known that the binary Kerdock code contains bent functions. We assume
the reader has some familiarity with Galois rings as can be gained in, e.g. [8].

Proposition 83 (Schmidt, [26]) Let n > 3 denote an integer. Let Ry, denote the
Galois ring of characteristic 4 and size 4. Let R}, denote Ry \ 2Ry. Let Ty, denote
the Teichmuller set of Rn, and Tr the trace function of Rn. The generalized Boolean
function in n variables defined for x € Ty, by

f(x) =e+Tr(sz)
for constants €,s ranging in Zy4, Ry, is bent. Its Gray image is either bent (n odd) or

semi bent (n even).

Proof The first assertion follows by [26, Construction 5.2] upon observing that ZRM (1,n)
is described by functions f(x) = e+2Tr(sz). The second assertion follows by Corollary
63. O

A monomial construction of a bent generalized Boolean function is in [26, Th. 5.3].
Intuitively it detects the generalized bent functions in the dual of the Goethals code.

Proposition 84 (Schmidt, [26]) Keep the notation of Proposition 83. Let u denote
the “reduction mod 2”7 map from Ry to Fon. The generalized Boolean function in n
variables defined for x € T, by

f(@) = e+ Tr(sz + 2ta®)
for constants €, s,t ranging in Za, Rn,Tn \ {0} is bent if u(s) = 0 and the equation
u(t)z3 +1=0
has no solutions in Fan, or if u(s) # 0 and the equation

pt? _

3
zZm+z+ =
pu(t)s

has no solutions in Fon.

By Corollary 63 the Gray map of this function is a binary Boolean function in n+1
variables which is semi bent if n is even or bent if n is odd. It is quadratic by Lemma
81.

In the original paper [29] it was mentioned that it would be interesting, for instance,
to replace the exponent 3 in Proposition 84 by a Gold exponent 2F 1+ 1. Then Li et all.
[12] characterized the functions in n variables of the form f(z) = Tr(az+ 2bm1+2k) for
odd n/ged(n/k).
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8.2 Quaternary bent functions
Proposition 85 For every n a quaternary function
9(x1 + 22041, ...y Tn + 222,) = €T + T1Tp 41 + ..+ TnToy

is a quaternary bent function with ¢ € Zs, j € {1,...,n} and '+’ is addition over Z4.

Proof One can see that g can be divided into sum of n quaternary functions in one
variable

9(x1 + 2%Tnig1, ooy Tn + 222,) = g1(21 + 22140) + o + gn(Tn + 222y),

Qxixi-‘rnv Z.f i 7é j7

(s 4 20 —
9i(®i + 2%i4n) {cmj + 22T 4p, 0f i = J.

From Proposition 43 we know that all x;, z;4,, are bent, i = 2,...,n. From Lemma 47
each of g; is a quaternary bent function in one variable, therefore, from Proposition 46
g is also a quaternary bent function. O

Proposition 86 Let g(x+2y) = a(z,y)+2b(z,y) and g'(z+2y) = a(z,y)+2(a(z,y) P
b(z,y)) be quaternary functions with x,y € Z5 and a,b be Boolean functions in 2n
variables. Then g is bent iff g’ is bent.

Proof Study the Walsh Hadamard Transform of g and ¢’. From Lemma 410 we have

~ 1 ~ —
G +2y) = 5 (Bo®y.a) + A Bly.x) — 2c4(2 ©9,2) — 2eaap(y)) +

+5 (By,o) — A- B @ y,2) - 2¢5(y,2) + 200 © y,0)
and
—~ 1 /—— ~
Go+2@ay) =5 (A4 Bly2) + Bl @y,2) - 200(y,2) — 2capn(z Gy, ) +
+5 (A B@ay.) - B,2) +25(4,2) — 2eags(z 31,7) )
with

Cf(u,l') = Z (_1)f(z,7y,)@<(u7r),(ml,yl)>’
eV, y’

where f is a Boolean function in 2n variables, u € Z%, and Vy = { 2 | (z,2') # 2.2’ }.
ALet R and & be > real and imaginary parts/\of a complex number respectively. Then
R(G(z +2y)) = R(G(z + 2(z D y))) and S(G(z + 2y)) = —S(G(z + 2(z D ))).

As it was mentioned in section 2 all quaternary bent functions are regular. There-
fore, each of Walsh Hadamard coefficients of a quaternary bent function has only real
or imaginary part. Hence, if g is bent then |G'(z +2(z D y))| = \@(a: +2y)| = 4"/2 By
the same way we can proof that if ¢’ is bent then \a(x+2y)| = |a\’(m+2(x€9y))| =4"/2
This completes the proof. O
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9 Conclusion and open problems

In the present work we have shown how generalizations of the notion of bent functions
involving the ring Z4 could produce, by Gray map or by base 2 expansion, bent Boolean
functions in the classical sense. We have proved that the approach of Kumar et al and
that of Schmidt are not equivalent at least in quaternary case. Schmidt’s definition fits
better Z4-cyclic codes constructions. Conversely classical binary bent functions (but
perhaps not semi bent functions) can yield generalized bent functions by inverse Gray
map. These results motivate to explore further algebraic constructions of generalized
bent functions. Although the results show that there is no direct connection between
quaternary and Boolean bent functions it is still might be possible to connect these
notions if we will ask for additional conditions. For instance, it would be interesting to
solve the problem that we mentioned at the end of section 4.3. It is also possible that
notions of ¢ — ary and Boolean bent functions more connected for g > 4.
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NMPUKNAOHAA JUWCKPETHAA MATEMATUKA
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PASBPABOTKA METOJA COKPBITUA ITPUBATHBIX JTAHHBIX J1JI4
CUCTEMBLI TEHIEPOB HA OCHOBE TEXHOJIOIMU BJIOKYENH'

. O. Koumbipes
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Ha ocuore orkpeiToii 60kueiin-miargopmbl Ethereum pazpaborana cucrema Tew/e-
POB, KOTOpas MMO3BOJISIET CKPBIBATH HH(OPMAINIO 0 3asBKAX HA dTAIE 3al1poca Mpei-
sioxkenuit. Co3/1aH HOBBIH METOJ, MO3BOJILAIONINN PENUTE TPODJIEMY TPHBATHOCTH HH-
dopMaIuu B OTKPHITHIX OJOKYEHH-CHCTEMAX C UCIIOJIb30BAHUEM KPHITOTIPAdITIECKOr0
MPOTOKOJIA J0Ka3aTenhecTRa ¢ HysesbiM pasrmamenneM zk-SNARK. Tlpemnoxkenmsit
METOJI PeAIN30BaH B BHIE KpUITorpaduieckoil cxeMbl Ha ocHoBe Oubinorexn libsnark.
st marerpanun Kpunrorpadpuueckoil cxeMbl B cucreMy moaudunuposan Ethereum
C++ wumeHT, Kyda J00aBjieHbl HOBbe (DyHKIHN U wHTEPQEHC 1 paboThl ¢ HUMU
B BHJIE PEIKOMITHJIMPOBAHHBIX KOHTPAKTOB.

Kuarodesbie caoBa: mendepn, pacnpedescnmvie cucmembl, Oa0kuetin, 0oxa3amens-
cmeo ¢ ryseeuim pasziawuernuem, zk-SNARK, naamgopma Ethereum.
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DEVELOPMENT OF A METHOD FOR HIDING PRIVATE DATA
FOR A BLOCKCHAIN-BASED TENDER SYSTEM

D. O. Kondyrev

Sobolev Institute of Mathematics, Novosibirsk, Russia
Nowosibirsk State University, Novosibirsk, Russia
Laboratory of Cryptography JetBrains Research, Novosibirsk, Russia

E-mail: dkondyrev@gmail.com

A tender system has been developed based on the Ethereum open blockchain platform
that allows to hide the information about applications at the request for proposals
stage. A new method has been created to solve the problem of information privacy
in open blockchain systems using the zk-SNARK,, cryptographic zero-knowledge proof
protocol. The proposed method has been implemented as a cryptographic scheme
based on the libsnark library. To integrate the cryptographic scheme into the system,
the Ethereum C++ client has been modified — a new tenderzkp module has been

! PafoTa BBRIIOIHEHA IPH moanep:kke Matemarndeckoro LlenTpa B AKaZeMropogke, cormamente ¢ M-
HUCTEPCTBOM HAYKH U BBICIEro obpasosanusi Poccuiickoit @eneparun Ne 075-15-2019-1613, u naboparopun
xpunrorpadun JetBrains Research.
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added. It implements functions for creating and verifying zk-SNARK proofs. Inter-
action with the implemented cryptographic scheme from the smart contract codes is
carried out through the new added precompiled contracts. A Solidity library has been
created to work with these contracts. The JSON-RPC API of the Ethereum C++
client has been expanded to enable to call methods of the cryptographic scheme from
third-party applications.

Keywords: tenders, distributed systems, blockchain, zero-knowledge proof, k-
SNARK, Ethereum platform.

Bseaenue

Ha ceroppsiiamit ieHs OOJIBITUHCTBO KOHKYPCHBIX 3aKYTIOK U 3JIEKTPOHHBIX TOPIOB TIPO-
BOJIUTCST Yepes Cleruan3upoBaHHbie MH(MOPMAIMOHHBIE CUCTEMBI. [ls1 Takux cucrem Kpu-
TUYHBIM $IBJISIETCSI BOIIPOC JIOBEPHUsI OIIEPATOPY TOPTOBOM ILIOMIAIKEA. Y YaCTHUKY JIOJIXKHBI
OBITH YBEPEHBI B TOM, UTO HUKTO HE UMEET BOSMOXKHOCTH HAPYIIUTH [IPABUIA TPOBEIEHUST
TeHJIepa WK TOJYyIUTh JOCTYI K KOH(pUIEHIHAILHON nHpopManuu. B paccMOTpeHHBIX
CHCTEMAaX BEPOSITHOCTH HAPYIIEHUs ITUX MPABUJI HE MOXKET OBITH MOJHOCTHIO MCKITFOUYEHA.

Pemurs mipobiiemy joBepust Ipu IPOBEJIEHUN TEHJIEPOB TO3BOJISIET OJI0KYeHH-TEXHOTO-
I'Ust HAJIEXKHOTO PACIIPeIeIEHHOrO XpaneHust 3amnuceit o rpansakimsx. [Ipenmytectso sToi
TEXHOJIOIMH B TOM, YTO OHA TO3BOJISIET B3aMMOJEHCTBOBATh YYACTHUKAM HAIPSIMYIO 0e3 1o-
cpesHuKa — orepaTopa Iiomaakn. [I[pu 9ToM maHHbBIe XPAHSITCS PACIPEIeIEHHO Ha y371aX
610K UeiH-ceTH, UCTOPHUS TPaH3aKIMI He MoxeT ObITh U3MeHeHa uiu yiajeHa |1 —3].

OJTHAKO TIPU UCTIOIB30BAHUM 3TONH TEXHOJOIMH JIAHHBIE COXPAHSIFOTCSI B OTKPBITOM BH-
Jie ¥ JIOCTYTIHBI BCeM yJacTHHKAM, 9TO He BCeryja MPUEMJIEMO MPU CO3JIAHUU TTPOMBIIILIEH-
HBIX TPOTPAMMHBIX CHCTeM. B ciydae ¢ TeHjepaMu OTKPBITOCTH WH(MOPMAIMHA HAPYIIAET
TalfHy 3asiBOK, KOTOpasl JOJKHA OBITH COXPAHEHA JI0 OKOHYAHHUS HTAIA 3AIIPOCca TPeIo-
JKEHHH. DTO He MO3BOJISIET MPOBOIUTE KOHKYPCHBIE 3aKYIKH B CYITIECTBYIONUX OTKPBITHIX
bIIoKUIeH-crCcTeMax.

Henpro manuol paboTh! siBasieTcst pa3paboTKa OTKPBITON OJIOKIEHH-CHCTEMBI /TS TIPO-
BEJIEHUsT TEHIIEPOB, KOTOpast permuia Ob TpodIeMy PUBATHOCTH WHMOPMAIIAH.

B pabore mposenén anamms mpenMeTHOW 00/IACTH, TPEJICTABICH KpaTKuil 0030p Tex-
HOJIOTUH, PACCMOTPEHBI CYIIECTBYIOIME TPOOJIEeMbI 3JIEKTPOHHBIX TOPTOBBIX ILIOMAJIOK U
NPeJIOKEH HOBBIH METOJ[ COKPBITHSI NMPUBATHOW WHMOPMAIMH B OTKPBITHIX OJI0KYEHH-
cucTeMax Jijisl Peau3aliii KOHKYPCHBIX 3aKyIoK. PaspaboTaHHbIl METO OCHOBAH HA ITPO-
TOKOJIE JIoKA3aTe/beTBa ¢ HyseBbiM pasriaiienueMm zk-SNARK (zero-knowledge Succinct
Non-Interactive Argument of Knowledge) u mosBosisier ckpblBaTh KOH(PUIEHITUAIBHYIO UH-
dopmaro Ha 3Tale IoJaAYH 3asIBOK.

st peamuzanuu mpejiokenHoro merona Momudunmposan Ethereum C++ wiumenr,
B KOTOPBIN MHTErpUpOBaHa paspaboTaHHas KPUITOrPapUIeckasl cxemMa Ha OCHOBe OHO/HO-
texu libsnark. /lobaBieHbr HOBbIE TPEIKOMITMINPOBAHHBIE KOHTPAKTHI /15T pAOOTHI ¢ KPHII-
rorpacduaeckoil cxemolt u peammsoBana Solidity-6ubimnorexa myst paboThl ¢ HUMH.

1. OcHoBHBIE TpeDOBAaHUSA K CHCTEME

OCHOBHBIMU TIPUHITMITAME TIPOTIEAYPHI MPOBEJIEHUST TEHJIEPOB SIBISIIOTCS OTKPBITOCTD,
IPO3PAYHOCTD, KOHKYPEHTHOCTD, PABEHCTBO yYACTHUKOB U clipaBeyimBocTh [4]. Mexoms us
9TOTO, MOKHO C(DOPMYIHPOBATEH TPeOOBAHUS, KOTOPBIM JIOJIXKHA YIOBIETBOPSITH HH(POPMA-
ITUOHHAS CUCTEMA TEHAEPOB!
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T1

T2

T3

T4

TS

T6

T7

T8

T9

HeBozmoxkHOoCTh m3MeHeHns uHdopmanmn. Bes uctopust TpaH3axiuwil B cu-
cTeMe JTOIKHA ObITH HEM3MeHsIeMON. Y YacTHUKY He JOJIKHBI UMEeTh BO3MOKHOCTH
WCIIPABJISITH JAHHBIE 3aPETMCTPUPOBAHHBIX 3asIBOK, & OPTaHU3ATOD — U3MEHSITH TIPa-
BUJIA WM PEe3yJIbTATHI MIOCTIe OKOHIaHUsT KOHKypca. OIHAKO TOC/e TOro, Kak TeH-
Jiep ommyOIMKOBaH, 9aCTO BOSHUKAIOT YTOTHEHWS! T N3MeHeHusI. Bee Takue mpaBku
JIOJIZKHBI O(POPMIISITHCS U PETUCTPUPOBATHCST B CHCTEME B BHUJE OTJEIBHBIX JIOKY-
MEHTOB.

HeBo3MOXKHOCTHL paHHEro BCKPbITHsI 3asgBOK. Hu y koro w3 mosmb3oBaTeseit
cucTeMbl (B TOM YHCJI€ U Y OPraHU3aTOPA TEHJEepa) He JIOJKHO ObITh BO3MOXKHO-
CTH TIPOCMATPUBATH JIAHHBIE MPEIOKEHUH YIACTHUKOB KOHKYPCA JI0 3aBEPITICHMSI
IePHo/Ia IPUeMa 3asIBOK.

AHOHUMHOCTD 3a9BOK. Y YaCTHUKU HE JIOJIKHBI 3HATH, KTO [TOJIAJ 3asIBKU HA TEH-
JIEP, JI0 €ro 3aBePICHHSL.

CokpbiTue dakra nmojgadu 3agaBKu. PaxT momadn KOHKPETHBIM 0/ IH30BATEIEM
3asIBKM HA KaKOW-TMO0 TEHIEP JT0JIKEH OBITh CKPBIT OT JPYTHUX MIOJIh30BaTe el Cu-
CTeMBI, TIOCKOJIBKY 3HaHUe 3TOro (baxTa packpbiBaeT WH(MOPMAITHIO O JIeSITeILHOCTH
[IOJTF30BATE ST M MOYKET HAPYIIATh MPUHIUIT KOHKYPEHTHOCTH.

Banper nmoamens! moJib3oBaress. Ocyiecrsierne JedcTsuit B cucreme (06bsiB-
JIEHHE TEeHJepa, MoJada 3asiBKU U JIP.) OT MUMEHU JPYTOro II0Jb30BATENsS JOJIKHO
OBITH 3aIPEITEHO.

OrkpbiTocTh mHpOpManuu. Bes wuapopMmarust 1omkHA OBITH B OTKPBITOM JI0-
cryme. Bo-miepBreix, 910 Kacaercs uHopMmanun 00 00bsIBIEHHBIX TEHJEPaX, BCE MO~
TEHITUATBFHBIE YIACTHUKHN JIOJKHBI UMETh K Hell J0CTYII, TPUIEM MOIydaTh ero Of-
HOBPEMEHHO, UTOOBI HE HAPYIIUTH MPUHITAIT YeCTHOCTH. Bo-BTODBIX, TOC/IE 3aBEp-
IMeHnsT TeHIepa CTOPOHHNE HAOII0IATe N JIOIKHBI UMETh BO3MOYKHOCTE TTPOBEPUTH
YeCTHOCTD TIPOBEJIEHUsT KOHKYPCA, TTOITOMY UM HEOOXOIUM JIOCTYT K Pe3yJ/IbTaTaM,
3asiBKaM U Beell ucropuu onepanuii.

HeBo3MOXKHOCTHL HApYMIEHUsS CPOKOB. 3asiBKM HE MOTYT OBITH TIOJIAHBI 70 Ha-
YaJia IPOIeIyPhl MOIAYN 3aBOK U MIOCJE 66 OKOHIAHUS.

lapanTns BbINOJHEHUS OPaBUJ TeHJAepa. Bce mpaBuia JOMKHBI OBITH TET-
KO 3a(UKCUPOBAHBI 1 00sI3aTE/IBHBI K HUCIIOJHEHNI0 BCEMHU YIACTHUKAME TPOTIECCA.
Hemomycrumo mamenenne mpaBuil TEHIEPa TIOCTE €10 00'bsIBJIEHUS.
Joka3zaTejabCTBO NOAAYM 3adBKHU. YYACTHUKUA KOHKYPCA JIOJKHBI UMETH BO3-
MOXKHOCTB JTI0Ka3aTh (haxT momadn coell 3assku. [Ipu 9ToM HE 0MH TT0/IB30BATE T
CHCTEMBI HE MOXKET IOJUIEIATH TAKOe JOKA3ATEIHCTRO.

2. O0630p npeasaraemMoro perieHus

BonbmmuacTBO CYIIECTBYIOMMUX CUCTEM JIJIsT IPOBEJIEHUsT TeHIEPOB UMEIOT ODIIYI0 CXeMy
dyurImonnpoannst. Kaxast-mbo opraHuszariysi, BEICTYIIAIONIAS B POJIM OIIEpaTOpa, IPeIo-

CTaBJIsIeT IJIOMAIKY, KOTOPOH MOTYT HOJB30BATHCST 3aMHTEPECOBAHHBIE KOMITAHUN. B 3TOM
caydae BCE B3aNMOIEHCTBIE YIACTHUKOB 3aKYIIOK C TLIONA KON OCHOBAHO HA JIOBEPUH Opra-
Hu3aImu-oneparopy. llomobHubie maaTdOpMbl He yIOBIETBOPSIIOT TPEOOBAHUSIM OTKPBITOCTH
¥ TIPO3PAYHOCTH U HE BCEIA MOTYT CIHUTATHCST HAIEKHBIMUA CHCTEMAMHU.

B macrosimee BpeMst BeIyTCsl UCCIEIOBAHUSI B 0DJIACTH JIEIEHTPAJTH30BAHHBIX CHCTEM
POBEJIEHNST TEHIEPOB. TexXHOIOrusT OJIOKIENH MO3BOISIET CO3IATH ILIOMAIKY, ¢ TIOMOIIHIO

KOTOPOU TI0JIB30BATE/ N MOTYT TTPOBOIUTH TEHJIEPHI U 3aKJIF0YATH JIOTOBOPHI HAIPSIMYTO He3
ydaacTusi mocpennnka. Best mabopMarmst 0 TeHepax XPaHUTCS Ha BCEX y3JaX OJTOKTeiH-
ceTu, 94To JiesaeT cucteMy Oosiee oTKazoycToitumnBoit. Kpome Toro, mrobast TpaH3aKImst, KO-
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Topast 3anucana B OJ0KUeiHe, He MOXKeT OBITH U3MEHEeHa WU yrajena. KoppekTHOCTh BbI-
[IOJIHEHUS TIPABIIT YIACTHUKAMUA KOHTPOJUPYETCS CMAPT-KOHTPAKTAMHE, UTO MO3BOJISET U3-
HABUTHCs OT BJIMSIHUST 9€JI0BEUECKOr0 (PakTopa Ha PE3yJbTaThl TeHjepa (HUKTO He MOXKEeT
HADYIIUTE MIPOTEYPY, TOCKOJIBKY BCE OIDAHUYEHUS PEATU30BAHBI B BHJE IPOTPAMMHOIO
KOJI&, KOTOPBI He MokKeT GbITh M3MeHEH) [5).

OtHUM U3 JIOCTOMHCTB TeXHOJOTHH OJIOKUEHH sIBJIsIeTCs OTKPBHITOCTD nHpopmarmu. JIio-
6011 OIL30BATEH BCEIIA UMEET BO3MOXKHOCTH IIPOCMOTPETH MH(POPMAITHIO, XPAHSATIYIOCs
B OJ0K4YelfHe, a TakyKe TPOCICIUTH BCIO ucTopuio Tpamsaknuit. Ho mosmast oTKpsITOCTD
Beelt urdopmanum Hapyiaet TpedOBaHUs K OPraHU3aAINN KOHKYPCHBIX 3aKyToK. [Iporemy-
pa MPOBEJIEHUS TEHIAEPOB IIPEJIIOIATAET, 9TO YIACTHUKYA HEe UMEIOT BO3MOXKHOCTHA O3HAKO-
MUTBCS € 3aBKAMU JIPYTUX PETEHIEHTOB HA CTA NN IPUEMa 3asiBOK. OPranuzaTop TeHe-
pa ToXKe JOJIZKEH MOJydaTh JTOCTYII K 3asBKAM TOJIBKO IIOCJIE TOTO, KAK 3aBEPITIEH UX IIPUEM.
[HoaroMy OTKPBITBIE OJIOKYEHH-CUCTEMBI /It IIPOBEICHUST TEHIEPOB He 00eCIIeYnBaioT He0O-
XOJUMBIN YPOBEHB IPUBATHOCTUA UH(MDOPMAIIHN.

Perternrem ipobiembr ipuBaTHOCTH MH(pOPMAIME B OJIOKIEHH-CUCTEME MOXKET OBITH 3a-
IATA JTAHHBIX T0cpecTBOM Tudposanus. CormacHo TaKOMY HOJXO/LY, IIPH [I0/IaYe 3asiBKN
YYACTHUK T€HEPUPYET CUMMETPUIHBIN KJII0Y, MM pyeT HHHOPMAIAIO O 3asiBKE ITUM KJII0-
YOM UM OTHIPABJISIET MIMDPTEKCT B KadecTBe cBoel 3agBku B Oyoxueitn. [locse oxonvanms
CpOKa IpUEMa 3asiBOK BCE YYACTHHUKH, OTIPABUBIINE 3asBKH HA TEHJED, JOJKHBI OTIPa-
BUTH KJIIOYH, KOTOPBIME 9TH 3aBKH MM poBaanch. VMest k104 u 3armmdpoBaHHY 0 3aBKY,
10601 KeJAoNuil MOKeT POBEPUTH KOPPEKTHOCTh JAHHBIX. TaKas cucreMa IPeJiIozKe-
Ha B [6]. OnHAKO TaKOl TOJIXO0/ HE TO3BOJISIET MPOBEPUTH KOPPEKTHOCTH 3aIM(POBAHHOMN
BasiBKM B MOMEHT €€ Iojiadu. FImé oHuM HeJOCTATKOM SIBJISETCS TO, YTO BCE YUACTHUKN
MOryT HaOIIOATE (DAKT MOAAYN 3asBKHU [T0IH30BATEIEM.

CucreMy TEHIEPOB MPEJIATACTCST PEATN30BATh HA OCHOBE TEXHOJIOIMH OJIOKYEHH, T0TO-
My YTO OHA ITO3BOJISIET 0OECIEYUTH MPO3ZPAYHOCTH U OTKPBITOCTD IPOIEIYPhI ITPOBEICHHS
KOHKYPCA; IPOBEPKa JIEHCTBUN yIaACTHUKOB MOXKET OBITH PeajM30BaHa B BUJE CMapT-KOH-
TPAKTOB, KOTOPBIE BBICTYIAIOT TaPAHTOM BBITOJIHEHUS TTPABULIL.

Heobxommmo peanmzoBaTh BOZMOXKHOCTE AHOHUMHOMN 1TOIA4H 3aBOK Ha TEHJIEPHI U 100a-
BUTH COKPBITHE UH(POPMAIINN O 3asIBKAX, IPU ITOM 00ECIIEYNB ITPOBEPKY €€ KOPPEKTHOCTH.
[To mcredennu cPOKOB MOJIAYHN 3a5IBOK MHMDOPMAIINS JIOJIZKHA PACKDPBIBATHCS U COXPAHSITHCS
B OTKPBITOM BHje. TakuM 006pa3oM, BCs UCTOPHA OYIAET OTKPBITON, UTO TO3BOJUT 0OeC-
[EYUTH MIPO3PAYHOCTH MPOEIYPHI TEHJIEPOB, IPHU 3TOM He OYAyT HAPYIIATHCH IPABUJIA
KOHKYPCHBIX 3aKYIIOK.

3. IIpobaema cokpbiTusa nHpOpMaANHA

Ha ceromusmmHuii 1eHb MOYKHO BBIIEIUTH B OCHOBHBIX MOJIXO/A K COKPBITHIO HHMOD-
MAIMH O TPAH3aKIMsX B Oyiokdeitn-cetn [7]:

— MEXaHWM3M CMeIlMBaHus (mixing);
— HOJAXOZ, HA OCHOBE JOKA3ATEILCTBA ¢ HYJIEBLIM Da3I/IAIICHIEM.

3.1. MexauausM cMEMUBAHAIA

[IpoTokoskr, oOCHOBaHHBIE HA JAHHOM TIOJIXOJE, IPUHUMAIOT PasHble (DOPMBI, HO BCE Pe-
AJM3YIOT OJIHY UJier0. ba3oBast mepeMernmBaroIiasi ceTh, TAKXKe M3BECTHAsSI KaK mixnet, sB-
JISIeTCsl TIPOTOKOJAOM MapIIPYTU3AIIUN, B KOTOPOM CePBEP IIPUHUMAET B KaveCTBE BXOJHBIX
COODITIeHNST OT HECKOJIbKUX OTIPAaBUTE e, epeMennBaeT ux U OTIPABJIseT B CIydalfHOM
nopsiake nojy4dareisiM. Llegb Takoil ceTr — UCKTIOYUTh BO3MOYXKHOCTD OTCIEIUTE COOTBET-
CTBUsI MEXKJIy OTIPABUTE/ISIMU U TIOJIyIATEISIMA TPaH3aKuit | 7).
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Taxoit nomxox peamusyercst B CoinShuffle [8], XIM [9], Mixcoin [10] u MHOTHX ApYy-
IUX cHCTeMax M MpoTokoJax. JaHHbI mogxo/ obiagaer psiioM HeJOCTATKOB, KOTODBIE He
IIO3BOJIAIOT IIPUMEHATDH €0 B TEHACPHBIX CHCTEMaX:

1) b 9aCTUIHO PeraeTcs npodjemMa AaHOHUMHOCTH, TIOCKOJIBKY HE MOJHOCTHIO CKPBI-
BaeTCst TH(MOPMAITHS 0 TPAH3AKITUSX;

2) cMemMBaHME TPUMEHUMO TOJIBKO JJIsl 3a7a9d AHOHUMU3AIMN TpaH3akiuil (1mo3Bo-
JISIET CKPBITH OTHPABUTE/Is); HET BO3MOXKHOCTH DPACIIMPUTEL AJTOPUTM Jisi OoJiee
00ITIero ciryvasi COKPBITUST TTPOU3BOJIBHBIX JTAHHBIX B OJ0KYIeHH-TPAH3AKITHSIX.

32. JoxazaTenbCcTBO ¢C HYJEBBIM pa3TjJalleHHueM

JokazaTeasCTBO ¢ HYJIEBBIM pasrialleHueM — KPUITOrpapuIecKuil IpoTOKOJI, B KOTO-
POM NPUHUMAIOT YYaCTHe JBe CTOPOHBI — JOKa3bIBAIOIIAsT U TIPOBepsitoiast (BepuduxaTop).
Hess mpoToxoIa 3aK/IF0IAETCST B TOM, ITOOBI BEPUMDUKATOP MOT yOEIUTHCS, ITO JOKA3BI-
BaoIasi CTOpoHa 0b0JaJaeT 3HAHHEM CeKPeTHOro mapamerpa. lIpu sToM cam cexpeTHBIH
napamerp He JIOJIKEH PaCKPBIBAThCs BepubuKaTopy Win Komy-jiubo emé [11].

D10 MoxkeT BBIThH MPEJCTABIEHO B BUJE IPOIPaMMBI ¢ JByMst Bxogamu C(x, a). Bxom x
SIBJISIETCS] OTKPBITBIM, (¢ — CEKPETHBIN napamerp (witness). Boixos nporpaMmmbl GuHapHBIH
(true ymbo false). 3amaércss KOHKPETHBIH OOIMIEIOCTYIHBIA . 3aja4a COCTOUT B TOM,
9TO0BI JI0KA3aTh, 9TO JOKASBIBAIOIIASI CTOPOHA 3HAET CEKPETHBIN mmapamerp a, Takol, 9To
C(x,a) = true.

JokazaTeasCTBO ¢ HYJIEBBIM DPa3IJAIIEHUEM 110 OIPEIEIeHUI0 TOKHO YIOBIETBOPSTH
CJIETYIOTAM TPEM CBOHCTBAM:

1) IomHoTa: eciu yTBEp:KjEHUE BEPHO U 06€ CTOPOHBI CJEJYIOT OJHOMY U TOMY K€
IIPOTOKOJLY, TO BEPUPUKATOP MOKET YOCIUTHCSI B MCTUHHOCTH Y TBEPIK JICHUS.

2) YeroamBOCTB: €C/M yTBEPK JIEHUE JIOXKHO, BEPUPUKATOD € OOIBIIOH BEPOSITHOCTHIO
He Oyzer yOexkI€H B €ro MCTUHHOCTH.

3) Hynesoe pasrianienue: BepupuKkaTop HE MOAYYIAET JOMOTHUTEIBHON MHMDOPMATIINN.

Kouriernust "HTEPAKTUBHBIX CHCTEM JIOKA3ATEIbCTBA € HYJEBBIM Pa3TJIAIICHUEM BIIEp-
Bble BBesieHa B pabore [12]. 3a rojpl uccienoBanuit B 06/1aCTH JIOKA3aTEIBCTBA C HYJIEBBIM
pasTIAIlleHHeM CHCTEMbI, OCHOBAHHBIE HA ITOM MeTOJe, MOCTENEeHHO Y/IyUIlajluch ¢ YIIo-
POM Ha ONTHUMHU3AIUI0 UX IPEPEKTUBHOCTH JJIsi KOHKPETHBIX MPUJIOXKEHUH. ITO MPUBEJIO
K TOSIBJIEHUIO aJTOPUTMOB, KOTOPBIE CYIIECTBEHHO COKPATHIM KOJMYECTBO PAyHJIOB B3au-
MOJIEHCTBUST YIACTHUKOB TIPOTOKOJIA.

OcoberrocTr TexHOJIOIMU OJOKYIENH, KOTOpasl B3sTa 38 OCHOBY IMTOCTPOEHUST CHUCTEMBI
TEHJIEPOB, HAKJIAIBIBAIOT PsiJi OPPAHUYEHIH Ha MCIIOJIb3yeMble KPUITOrpahUIecKre poTo-
KOJIbI, B YaCTHOCTH HA JIOKA3ATEJHLCTBO € HYJIEBBIM pasriaiienueM. 1lockombky Groxueitn
SIBJISIETCST PACTIPEJIEIEHHON CHCTEMOM, TOIB30BaTEIM MOI'YT He OBITH B CETH OJHOBDEMEH-
Ho. IIpm sTOM JOKA3aTENHLCTBO JIOJKHO OBITH JOCTYITHO BCceM ydacTHukam. [locie Toro
KaK JIOKA3aTeJIbCTBO TPEJOCTABICHO, JIIOOOH TOIB30BATE b JTOJIKEH UMEeTh BO3ZMOXKHOCTD
[IPOBEPUTH €10 KOPPEKTHOCTH B JIFOOOH MOMEHT BpEMEHH. JTO JIeJaeT IPUMEHEHUe WHTeD-
AKTUBHBIX MTPOTOKOJIOB JIOKA3ATEJbCTBA € HYJEBBIM pasrjalleHueM B OJI0KIeHH-CrcTeMax
TPYIHOPEATUZYEMBIM.

B pabote [13] BriepBbIe npeioXkeH HEMHTEPAKTUBHBIN IIPOTOKOJI JIOKA3aTeIbCTBA ¢ HY-
JIEBBIM pasriiarienreM. HenrrepakTuBHas cucTeMa COIEPKUT TOJIBKO OJIHO coodienue (1o-
Ka3aTeJIbCTBO ), KOTOPOE JIOKA3BIBAIOIIAs] CTOPOHA OTIIPABJIsieT BEPU(MUKATOPY, T. €. B3AUMO-
JleficTBre MeXKJly YUACTHUKAMU TIPOTOKOJIA CBOJUTCS K OJHOMY payniy. JlamsHeitme wc-
CJIeJTOBAHUST B 00JIACTA HEMHTEPAKTUBHBIX ITPOTOKOJIOB OBLIM HAIIPABJIEHBI Ha OITUMU3AITAI)
BBIYUC/IATETHHON 9(D(HEKTUBHOCTH U COKPAITEHNE PasMepa JI0Ka3aTeIbCTBA.
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Cy1iecTBeHHBIM TIPOPBIBOM B 9TOM HAIPABJIEHWM MOYXKHO CUYHUTATH IOSIBJIEHUE ZK-
SNARK [14], koropsiit cienan Bo3sMOXKHBIM 3 (HEKTUBHOE UCIIOIB30BAHINE HEMHTEPAKTHB-
HBIX ITPOTOKOJIOB JIOKA3aTE/IBLCTBA C HYJIEBBIM Pa3rjalleHneM B OJI0KUIeliH-crucTeMax.

33. Kpunrorpaduageckuir nporokos zk-SNARK

zk-SNARK — 5710 kpunrorpadudeckuil mpoToKoJ HEMHTEPAKTUBHOIO JIOKA3ATETHCTBA
3HAHUS ¢ HYJIEBBIM pasraiienueM |15]. OH mo3Bo/geT 10KA3BIBATE, YTO HEKOTOPBIE IIPUBAT-
HBIE JIAHHBIE YIOBJIETBOPSIOT CUCTEME OIDAHUYEHUH, BRIPAsKEHHOH B BUIe aprudMeTHIecKo
cxembl ', He pacKpbiBast 9TH JaHHBIE.

zk-SNARK npescrasisier coboit TpoHKy aJropuT™MOB MOJUHOMUATEHOIO BPEMEHU Bhbi-
nosnuenus: (Gen, P,V):

— Gen(\, C) — (pk,vk). Dror amropuT™m NpUHUMAaeT B KAYeCTBE BXOJHBIX JTAHHBIX I1a-
pamerp GesomacHocTd A u apudmerndeckyo cxemy C. Ha ux ocuose remeparop Gen
COBJIAET Tapy KJIFoUel — KJI0Y jrokasaresersa (pk, proving key) u kirod Bepudukanum
(vk, verification key). Oba kitoua mybIMKyYIOTCs KaK OTKPBITHIE TIADAMETPBI 1 MOI'YT HC-
[I0JIB30BAThCS JII000€ KOJUYECTBO pas JJIsl CO3IaHUsI JOKABATEIbCTBA U TIPOBEPKH €0
KOPPEKTHOCTH.

— P(pk,z,a) — 7. [lpunumast Ha BXOJ| K109 JOKa3aTebCTBa pk 1 r0dbie (T, a), Tae T —
nyOJIMdHBIE TAHHBIE, ¢ — CEKPETHBIN ImapaMeTp, aaropuT™M P BBIBOIUT HEUHTEPAK THBHOE
JIOKA3aTeIHCTBO T.

— V(vk,x,7) — b. llpuanmas: Ha BXOJ, K04 Bepudurkaryuu vk, nyOJUIHbIE JTaHHBIE T
U JIOKA3aTeIbecTBO 7, BepudukaTop V BeLIaéT b = 1, eciim 10KA3aTeIBCTBO SIBJISIETCST
KOPPEeKTHBIM, 1 () nHave.

Jlarnast KOHCTPYKIMS yIOBJIETBOPSIET BCEM TPEOOBAHUSIM, TP bSIBIISIEMBIM K AJTOPUT-
MaM JI0Ka3aTeIbCTBA ¢ HyJIeBbIM pasriarieHuem |15].

[penmymectso zk-SNARK Ha 1t ApyravMu mpoToKoIaMu JTI0Ka3aTe IhbCTBa ¢ HYJIEBBIM Pas-
[JIAITIEHUEM 3aKJII0YAeTCH B rapaHTusx 3(MOEeKTUBHOCTH: JIINHA JOKA3ATEIHCTBA 3aBUCHT
TOJBKO OT IapamMeTrpa 06e301IaCHOCTH, & BPeMsl IPOBEPKU HE 3aBUCUT OT Pa3Mepa CXeMbl U
cekperHoro napamerpa. Takum obpaszoMm, zk-SNARK moxHO paccmarpuBaTh Kak HEHHTED-
AKTUBHBIN IIPOTOKOJI ¢ KOPOTKUM JIOKA3aTEILCTBOM M OBICTPHIM BPEMEHEM BepU(PUKAIINH,
4TO JIeIaeT ero Haubojee MOXOSIINUM JIJIsl UCIIOIb30BaHus B OjiokdeitH-cucremax |16].

34. CoxkpoiTue uadgopmanuu B nmardopme Ethereum

Best uadopmanms 8 Ethereum-6/10x4ettne xpanuTest B OTKPBITOM BUE, & TPAH3AKITUHN HE
CKPBIBAIOT CBOMX 3HaYeHM. Kaxmast TpaH3aKINsT COMEPKUT ajpeca aKKayHTOB OTIPaBHU-
TeJIs ¥ NoJTydaTe st U nepejiasaeMble fannbie [17]. Ilpu s3roM HeT BOSMOXKHOCTH CPeICTBAMU
Ethereum cxpeith 1acTh noJeit Tpansakiuu (HapuMep, HEJIb3si CKPBITH aJIpec aKKayHTa
OTIPABUTE IsI TPAH3AKIIAHY ).

B zk-SNARK nporeaypa npoBepKH JI0Ka3aTe/ILCTBA, COCTOUT U3 OLEPALMN Ha DI TH-
YeCKUX KPUBBbIX. B gactHOCTH, BepudukaTop TpedyeT CKaJsIPHOTO YMHOXKEHUST U CJIOXKEHUST
Ha TPYIIIE TOYEK LIUNITUIECKUX KPUBBIX, 8 TAKYKe BBITUCIUTETHHO DOJIee CJIOXKHON ore-
paruu — OMIMHEHHOTO ClTapUBAHUS.

Ethereum mpenocrapisier peanmzaruio 9TUX omeparii B BUE MPEIBAPUTENIBHO CKOM-
MIJTMPOBAHHBIX KOHTPAKTOB. C MX TOMOITBI) €CTh BO3MOXKHOCTH PEaTU30BATH CXeMbl HA
OCHOBE JI0Ka3aTe/IbCTBA ¢ HYJEBBIM Das3r/IallleHueM B Koje cMapT-KoHTpakTos |18, 19)].

Camu aJIrOpUTMBI TeHepaIi U Bepudukalimn jokasaresbersa zk-SNARK He peauszo-

BaHEI B H.HaT(bOpMe. B CBsI3U C 9THUM BO3HUKAET pH,ZL HpO6H€M HpI/I HCITIOJIB30BAaHUMU CXEM Ha
ocaoBe zk-SNARK B Ethereum:
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1) HeT BO3MOXXHOCTW cOo34aBaTb C/I0XKHbIe CXeMbl. Bce anropmtMbl A0/DKHBbI ObITh pea-
JIN30BaHbl B CMapT-KOHTPaKTax, Ha pa3Mep Kofa KOTOPbIX HaK/1aAblBalOTCA XKECTKUE
orpaHMyeHusi, a KpunTorpaguyeckme cxembl, Kak npaBusio, TPebyT 60/bLLIOI0 KO-
NindecTtBa onepauuii.

2) Bce anropnTmbl MPUXOAUTCA PeasIN30BbIBaTb BPYUHYHO.

3) /[Ana kKakaoro HOBOro KOHTPaKTa HE06X0AMMO reHepupoBaTh O0TAe/IbHbIE MapaMeTpbl.

35. Buonumorteka libsnark

Libsnark — kpuntorpaguyeckasa 6ubnnoteka ¢ OTKPbITbIM UCXO4HbIM KOAOM, HanmcaH-
Haa Ha A3blke C++, KoTopasa obecneumBaeT 3PPEKTUBHbIE peasin3aumnn KOHCTPYKLW
zk-SNARK [20]. Bubnuoteka fBfifeTcA camMbliM ObICTPbIM U MOMHLIM Habopom fJokasa-
TeNbCTB C HY/1IEBbIM pasrnallueHueM, OOCTYMHbIX Ha AaHHbIVi MOMEHT [16].

Ana cosgaHmna kpuntorpaguuecknx cxem zk-SNARK 6mbnmnoteka npeacraBfisieT Ha-
60p BbICOKOYpPOBHEBBLIX MHTepdiericoB (gadgetlibl, gadgetlib2 n gp.). 3T nHTepdeicsl ocy-
LLLeCTBNAIOT Npeobpa3oBaHUsA BbICOKOYPOBHEBbIX crneumduKaunii B apumeTnyeckme Cxemsl,
peannisoBaHHble B Agpe 6Mbnnotekn. C UX MOMOLLbIO MOXXHO CTPOUTbL HOBble KpuMTOrpa-
hnyecKme cxemMbl Ha OCHOBE peasin30BaHHbIX HN3KOYPOBHEBLIX NMPVIMUTUBOB.

4. ApXNTeKTypa CUCTeMbl NpoBefeHna TeH4epoB

B paHHOIN paboTe co3gaHa cucTema MNpoBeAeHUsI TeHAEpPOB Ha OCHOBe MiaTqopMbl
Ethereum. ApxmntekTypa cucTemMbl COCTOUT U3 Cneayowmx Moy e, KoTopble N306paXkeHbl
Ha puc. 1:

— CMapT-KOHTpakTbl B Ethereum, obecneunBatowe paboTy ¢ 6/I0KUYENHOM;

— MoandunumMpoBaHHbIi Ethereum-KnmeHT;

— Java-npunoxkeHve, npegocTaBfisdloLLee BbICOKOYPOBHEBbIV MHTepdeiic ana paboTbl ¢ cu-
CTEMOIA.

Ethereum-kKNmMeHT npeacTaB/isieT cob6oil peanmsayumio nMpoTtokosia Ethereum. 3710 mpo-
rpamMmma, KoTopasi noafep>kmBaeT COCTOSIHME LLenoyku 6/10KOB TpaH3akumii u npegocras-
naet APl ana npoBefeHMA TpaH3akuuii M 3anpoca UHGOpMauMm 0 TeKyLLeM COCTOAHUU
Lenoykn 6710KoB. Yepes Hero npoucxoguT BCcE B3auMogeiicTBue ¢ 6/10KYeHOM, B TOM 4uC-
Ne co cMapT-KOHTpakTamMmu. KnnmeHT BKJIOYaeT B cebsa peanmsaumio BUPTYaslbHON MallWHbI
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Ethereum, koropas 3amyckaercst Ipu BBITOJTHEHUN TPAH3AKIHH, B3aUMOIEHCTBYIOMINX CO
cmapr-koHTpakTamu [21]. Emé omHott ero 3ajaqeit siB/isieTcst OCyIIECTBIEHHE CETEBOTO B3ar-
UMOJENCTBHST C JIPYTUMH KJIMEHTAMH, BMECTE OHU 00Pa3yIOT eIUHYI0 OJI0KIeHH-ceTh.

CymectByer HeckobKO peanusaruit Fthereum-ximenra Ha pasauaHBIX sI3BIKAX TIPO-
rpamMMuposanusi. B pazpaborannoit cucreme ucnosnssyercst C++ Fthereum-kimenr (aleth),
IOCKOJIBKY MHTErpUpoBaTh 6ubmorexy libsnark B xom 9T0oro KimeHTa 0Ka3aaoch HanbOee
npocto u 3ddexrusHo. [Ipr 93T7OM crcTema He ToIAraeTCST HA OCOOEHHOCTH PEATMSATIINH KJTH-
enta aleth. Bee neobxomumbie momudrkanmm MoxkHO BHecTH 1 B Apyrue Ethereum-kmmenTsr,
JUUIST 9€ro He ToTpedyeTcst MEHSITh apXUTEKTYPY CUCTEMBI.

Bcé BzanmogetictBue mex ity Java-ipuioxenuem u Ethereum-xiumentoM (BbI30B MeTO-
JIOB CMapT-KOHTPAKTOB, MPOC/IYNIMBAHAE COOBITUH, 3a1POC MH(MOPMAIN) OCYIIECTBIISIeT-
cs1 ¢ momorbio JSON RPC. JSON-RPC — 910 serkoBecHBIN TPOTOKOJT YIAJEHHOTO BBI30BA
npotenyp (RPC) 6es coxpanenust cocrostaust [22]. On ucnonssyer JSON B kauectse popma-
Ta JaHHBIX, & B KA9eCTBe MPOTOKOJIA Hepeaadn coolinenuit B cucreme ucnoabsyercss HTTP.

[Iporokon JSON RPC, peanusyemsbrit kmuenrom Ethereum, siBistercst moBoIBHO HA3KO-
YPOBHEBBIM, U paboTaTh ¢ HUM HanpsiMmyto HeadgdexktusHo. [losTomy 115t B3ammoecTBIst
€O CMapT-KOHTPAKTAMH HCHOJIb3yeTcst Java-Oubimnoreka webdj, koTtopast paboTaeT moBepx
JSON-RPC API kmuenrta Ethereum. Web3j nossossier paborars ¢ 6oxdeiinom 6e3 mo-
[IOJTHUTETHHBIX HAKJIAIHBIX PACXOJ0B Ha HAITMCAHUE COOCTBEHHOTO MHTETPAITMOHHOTO KOJIA.
Bubnuorexa nopnepxusaer see meroasl JSON-RPC API u moxer paborars ¢ a00bIM KJIU-
earom Ethereum, koropsiit ero peanusyer [23].

st 6omee yamobHOTO B3AaMMOIEHCTBHSI CO CMapPT-KOHTPaKTaMu web3] Io3BOIsSIeT CO31aTh
Java-obosrouxu. Ha ocHOBe KOjta cMapT-KOHTPAKTOB TIOPOXKIAIOTCST KJIACCHI, KOTOPBIE TIPeI0-
CTaBJSIIOT (DYHKITUM CO3AHUST M Pa3BEPTHIBAHUS CMAPT-KOHTPAKTA, BBI30Ba ero (PyHKIUHI
M BBIIOJHEHUsT TpaH3akIwmit u3 Java-koza [24].

Pacemorpum moipobHO, Kak yCTPOEHBI OTHEbHBIE MOJTYJIH.

41. MogudpunupoBaausit Ethereum-xaument

Peaymzanus kpunrorpaduaeckux nporokosios Ha ocuose zk-SNARK npenmnonaraer re-
HEPAIMIO U IIPOBEPKY OTPAHUIEHHH, a TaK:Ke BBIIOJIHEHHe olepauil Ha [ 3JIMITHIECKITMI
KPUBBIMH.

NszHauampHO peajmnsaiidst 9THX Olepaliiit ObLIa BBIIOJIHEHA B BHUJIE CMApPT-KOHTPAKTOB,
olHAKO OKazasach HeapdexTusHON. Koa cMapT-KOHTPAKTOB XpaHUTC B OIoKYeliHe, a ero
BBITIOJIHEHHE [TPOUCXOIUT IIPH IIPOIECCe TPOBEPKHU KOPPEKTHOCTH TPAH3AKIIMN B BUPTYAIb-
Holt Mmarmae Fthereum ma xaxxmom ysie ceT, TOIIEPKUBAIONIEM TETIOUKY OJIOKOB TPaH3-
axmuit. [TosToMy K KoLy ¢MapT-KOHTPAKTOB IIPEIbSIBISIIOTCS KECTKHIE TpeboBaHusI 110 3(h-
(PEKTUBHOCTH BLIYUCJICHHs ¥ pasMepy. A kpunrorpadudeckue onepaun, HeOOXOIUMbIE JIJIsi
paboOThI CHCTEMBI, SIBJISTFOTCSI BBIYUCIUTEIHHO 3aTPATHBIMU W DU PEATH3AIMA HEIIOCPEI-
CTBEHHO B CMapT-KOHTPAKTAX CHIBHO YBEIMIUBAOT pasMep xoma. [losromy ObLIO perreno
peanm30BaTh ITOT TPOTOKOJI Ha cTopoHe Kthereum-ximenta.

42. Kpunrtorpaduueckas cxema

st peamsarum aropuT™Ma COKPBITHST MH(MOPMAITHN O 3asTBKAX HA OCHOBE JIOKA3ATE/ b
cTBa ¢ HyJeBbIM pasriamennem B Ethereum C+-+ kiment mobabieH OTHEIBLHBIM MOIYJIb
tenderzkp. Ou nocrpoen Ha 6aze nporoxosa zk-SNARK ¢ npenobpaborkoit (preprocessing
zk-SNARK) st NP-nosmoro sisbika cucrembl orpanmdenuit panra 1 (R1CS—rank-1
constraint systems). IIpoTokos ucnosssyer s/umnTaecky Kpusyto bappero — Haepura.
Peaymmzanust kpunrorpadgudeckoit cxembl npegocrasiera 6ubauorexoit libsnark [20].
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OcnoBHoOlT mHTEpPdENC ITOTO MOTY/ISI COCTABISIOT 1B (DYHKITHIN:
— generate_proof(proving _key, public_input, private _input) — proof;
— werify_proof(verification _key, public_input, proof) — {true, false}.
OyHKIMs TeHepanymu JI0Ka3aTeabLCTBa generate  proof TPUHAMAET HA BXOJ, OTKPBITHIE

(public_input) u npusartuble (private inpul) naHHBIE, a TaKXKe KJIHOY JOKA3ATEIHCTBA
(proving _key). llpuBaTHBIMU JAHHBIMY JIJIs1 3asIBKUA Ha TEHJIED SIBJISTEOTCS:

— ID yuacTHuKa, TOJAIOIIETO 3asIBKY;

— 1D rennepa, Ha KOTOpbIN IOTACTCS 3asIBKA,;
— BpeMs TOJIa9H 3asBKH;

— CyMMa TIPeJIJIOXKEHUSI.

K orkpbiThiM manubM oTHOCHTCsE mH(pOpMalmst o rerzepax (1D rennepos, BpemMst OKOH-
YaHUs TPUEMA 3asIBOK, MAKCUMAJIBHO JOIYCTUMBIE CYMMBI TIPEJJIOKEHHUT ), KOTOPBIE IIPOBO-
JISITCsT Ha, JaHHBIN MoMeHT, u 1D monb3oBaresreil cucTemsl.

JL1st mpUBaTHBIX JAHHBIX 3asIBKH HEOOXOIMMO IPOBEPUTH, UTO BBIIOJIHEHBI CJIEIYIONINE
YCITOBUST:

— CyMMa TIPEJIJIOZKEHNsT He TIPEBBIIIAeT MaKCUMAJIBHO JIOTYCTUMOMN J1JisT TEeHIepPa, Ha KOTO-

PBI OTaeTCs 3as9BKa;

— BpeMsI [TOJIAYN 3asIBKU HE MPEBBINAET BPEMEHH OKOHYAHUS TPUEMa 3asIBOK Ha JIAHHBIN

TEHJIEP;

— yuacTHUK ¢ TakuM D jeficTBUTEHLHO 3apEeruCTPUPOBAH B CUCTEME.

Yrobbl CO37ATH JIOKA3ATENIBCTBO C HYJIEBBIM DA3IJIaIlleHHeM, HEOOXOIMMO BBIPASUTD 3TH
YCJIOBHSI B BHJIE OPPAHUYEHUI HA NPUBATHBIE W OTKPBITHIE BXOJHBIE JaHHBIE. [ly1s1 9TOrO
coznan kiace TenderGadget, B KoropoMm peanm3zoBaHa KpUITOrpapUIecKasi CXxema.

TenderGadget BuIpazkaer ycaoBUsI KOPPEKTHOCTH 3asiBKH C IIOMOIBIO 0A30BBIX
cxem Ombmorexkn gadgetlibl. [last sroro memosbsytorest dyukmmun comparison gadget,
conjunction__gadget u disjunction_gadget, peanusyrorime CpaBHEHHE IEJTOTUCTIEHHBIX
sHauenuil (B manHoM ciydae 3ro 1D rengepos, 1D nosassosareseit, cymmbl npeioxenuit u
BpeMsi) U JIOPUYECKHE OIEPAIN KOHBIOHKITUY U U3 bIOHKIIUA COOTBETCTBEHHO.

[TocTpoennast apudgmerndeckast cxema mpeodpasyercst B H0/ee HU3KOYPOBHEBBIN BIIT —
cucremy orpannuenuit panra 1. IHonxyuernnoe R1CS-nipesncrapienne UCIOIB3YeTCsS B JAIb-
HeHIeM aJropuTMaMu TeHepaIuu 1 BepuuKaIiy JoKa3aTeabcrsa libsnark.

Ha ocnose RI1CS-npejcraBienust reHepUpyeTcs: JOKA3ATENbCTBO YTBEDPXKIEHUSI, UTO
BXOJHBIE JIAHHBIE YJIOBJETBOPSIIOT CUCTEME OTPAHUYEHUH. DTO JTOKA3ATENHCTBO SIBJISIETCS
BO3BpAaIaeMbIM 3HadeHneM (PyHKIN generate_proof.

DyHKIMST TPOBEPKU JOKa3aTeILCTBa verify proof NPUHUMAET OTKPBITHIE JAHHBIE
(public__input), nokasarenncTBO, creHepupoBaHHoe (yHKImel generate proof (proof),
u kiou Bepudukaruu (veri fication _key). Ona Bo3Bpammaer true, ecii J0KA3aTEIbCTBO
KOppeKTHO, 1 false nnade.

[lapa xitoueit (nokasarenbersa u BepudUKaIiy ), HeoOXOIUMast JJisi pAbOThl AJTOPUT-
MoB zk-SNARK, smistercst obimeit jijist Beelt cxeMbl, T. €. JJIst BCEX KOHTPAKTOB TEHIEPOB
UCTIOBL3YFOTCST OJTHU U Te ¥Ke KJI0Un. Brarogapst 3ToMy, ecTh BOSMOXKHOCTE HE XPAHUTH I1a-
Py KJIOYel B CMapT-KOHTPAKTaX, a MepesokuTh (DyHKIHMIO0 yiipasienus: uMu Ha Ethereum-
KJIMEHT, 9T0 Oosiee 3(p(PEKTUBHO KaK ¢ TOUKH 3PEHUsT UCTIOIB3YEMON TAMSTH, TAK U ¢ TOYKH
3peHusi CKOPOCTH 3arpys3ku. B paspaboranHoil cucreMe kitoun mepejatorcs B Ethereum-
KJMEHT B BUJie KOH(MUTYPAIMOHHBIX (ailjioB U 3arpyxKarorest Mojyiem tenderzkp npu Boi-
zoBax dyHKIMH generate proof w verify proof.
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B paspaborannoil cxeme Ha TECTOBBIX JAHHBIX TTAPAMETPBI UMEOT CISIYIOIINE PA3MEDHI:

— mapametp bezomacuoctu A — 192 Gaitra;

— KJI0Y JokazaTebeTBa pk — 231 xbaiir;

— o4 Bepudurarmu vk — 1 884 Haitra;

— mybauunbie ganable T — 480 OafiT;

— cexperHBIH mapamerp a — 192 batiTa;

— JI0Ka3aTesbeTBO T — H76 OaliT;

— apudmerndeckasi cxema (' 3amaéres B xoge (kiace TenderGadget). Eé pasvep B nipe-
0bpa3oBaHHOM JIJIsT AJTOPUTMOB JIOKA3aTEILCTBA U BEPU(DUKAIIIN BUJIE COCTABJISIET OKO-
J10 77 KbaifT.

4.3. BzaumMogeticTrBue ¢ KpUOTOrpapuIecKo cxeMoH

Y cMapT-KOHTPAKTOB JIOJKHA OBITH BO3MOXKHOCTH B3aUMOJIEHCTBOBATE € PeaM30BaH-
HOM KpunTorpaduaeckoil cxeMoil — BBI3bIBATE (DYHKIIMM TEHEPAITMH W TIPOBEPKU T0KA3a-
TeJILCTBA U TIOJIYIaTh BO3BpAaIlaeMble 3HaUeHUs1. BBITOTHeHNe KO/Ia CMapT-KOHTPAKTOB IPO-
WUCXOIUT B BUPTyaabHOM Mmarmae Ethereum, mosromy oiHIM 13 BOZMOXKHBIX BAPHAHTOB Pea-
JIM3aIIN B3auMoaeiicTBust ObLT0 OBI mobaBIeHre HOBBIX oneparuit B EVM. Ho npu Takom pe-
IIIeHUH HeOOXOIUMO BHOCHTD OOJIBINIOE KOJIMIecTBO n3MeHeHuni B maTdopmy Ethereum —me
TOJBKO JTOMOJHUTH HabOp koMmaua VM, HO u BHECTH COOTBETCTBYIOMTHME TOPAOOTKH B KOM-
IAJISITOPBI BBICOKOYPOBHEBBIX SI3bIKOB HAIIMCAHUSI CMaPT-KOHTPAKTOB (Takux kax Solidity).

AJTBTepHATUBHBIM TIOJIXOJIOM SIBJISIETCST CO3JIAHME MTPEIKOMITMINPOBAHHBIX KOHTPAKTOB.
[Ipe koM IMPOBAHHBIN KOHTPAKT — 9TO CMAPT-KOHTPAKT, KOTOPBIM mMeeT (DUKCHPOBaH-
HBII ajpec 1 KOJI, KOTOPOro pean3oBaH HemocpeacTBernHo B Ethereum-kmmenrax. Bosabrmast
yacTh Kpulirorpadudeckux onepanuif B Ethereum (Boccranosienue azpeca akkayHTa U3
ECDSA nogmucu, xem-dgyuaximun SHA-256 u RIPEMD-160 u ap.) peasusoBana uMeHHO
B BUJIE [PEJIKOMIIMIMPOBAHHBIX KOHTPakToB [25]. Takue KOHTPAKTBI SBJISIEOTCSI TECTOBBI-
MU U3MEHEHUsIMU APXUTEKTYPBI, KOTOPBIE BIOCAEICTBUU MOTYT CTATh YaCTBIO MIPOTOKOIA
Ethereum [26].

B paspaborannoit cmcreme pereHo HCIOJIb30BATH BTOPOH IMOIXOM, UTOOBI MUHUMU-
3UPOBATH KOJUYIECTBO U3MEHEHWH OTHOCUTEBHO CYIIECTBYIONINX PeaTu3aIiiil mpoToKoIa
Ethereum. B Ethereum C++4 kmuent mobaB/ieHbl HOBBIE MTPEIKOMITHITHPOBAHHBIE KOHTPAK-
oI ¢ agpecamu 0x00. . .09 u 0x00. . . Oa. [Ipu obparmennn k HUM U3 KOJIa CMAPT-KOHTPAKTOB
BBIBIBAIOTCsT DYHKITHE generate proof mverify proof mobasnennoro momyiist tenderzkp.

lereparust mokazaTebCTBA JOJKHA MPOUCXOINTH BHE OJIOKYIElHA, TAK KAK MPUBATHAS
nH(pOPMAITUST 3asIBKU HE JOJKHA MOTACTh B OTKPBITHIN MOCTYI Ha JaHHOM dTare. Beé B3a-
umoyteticTere ¢ kauernToM rnpoucxogut depe3 JSON-RPC API, nostomy aTober 106aBuTh
BO3MOYKHOCTB BBI3BIBATH METOJIBI KPUMTOIPADUIECKON CXeMBbl U3 CTOPOHHUX MPUIOXKEHUH,
nobaBieHbI COOTBETCTBYIONNE nHTEPdQeiickl B Momyas web3jsonrpe Ethereum CH+ -
enta. Ha puc. 2 npencrasinena cxema Bcex Mogudukarmit, BHecéHHbIX B Ethereum C++
KJTHEHT.
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Puc. 2. Mogndukauun Ethereum-knueHTa, pean3oBaHHbIe B CUCTEME

44, CMapT-KOHTpPaKT®HI

CMapT-KOHTPaKTbl — 3TO 00beKTbl B 6/10KYEliHe, KOTOPbIe coaep>KaT CBOE COCTOAHUE U
Ko, (pyHKUMIA. OHM HanucaHbl Ha CTATUYECKN TUMU3NPOBAHHOM BbICOKOYPOBHEBOM A3bl-
Ke nporpammumpoBaHmsa Solidity, npegoctaBnsgemom nnatgopmori Ethereum. O6wasa cxema
MOAY/1IA CMapT-KOHTPaKTOB M306padkeHa Ha pwuc. 3.

Puc. 3. Cxema moayns cMapT-KOHTPaKTOB

OCHOBHbIM CMapT-KOHTPAKTOM SB/ISAeTCS peecTp TeHAepoB (Registry). B HEM xpaHuTCS
MH(opMaLMsi 0 3aperucTprpoBaHHbIX TEHAEPAX U CCbIZTIKM HA X KOHTPaKTbl, a TakXe Bce
3aKpbIThie 3a8BKN Ha TeHAepbl (4oKasaTesibCcTBa, NOJSTyYeHHbIE a/IrOPUTMOM KpunTorpadu-
YECKOW cxeMbl). Uepe3 3TOT KOHTPAKT MPOXOAUT permcrpaumsi Bcex TEHAEPOB B CUCTEME,
a TakXKe rnojava 3aKpbITbIX 3asBOK. 3aKpblTasi 3asiBKa MOXKeT 6bITb 3aperncrpypoBaHa B
peecTpe TO/IbKO B TOM c/lydae, ec/iv MpoxXoauT MpPoBepKa [AoKasaTesibCTBa, peasiM3oBaHHas
B MPeAKOMMMIMPOBAHHOM KOHTPAaKTe.
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st kaxoro renzepa cosmaercs ordenbHbiil konTpakT (Tender), B xoTOpOM coxpa-
HsieTCsT MH(OPMAITHST O HEM, TEKYIas CTaus KOHKYPCA, MOJAHHBIE OTKPBITHIE 3asTBKU U
I/IH(bOpMaHI/IH O pe3ybTaTax. Ho,zLaqa OTKPBITBIX 3a4ABOK IIPOUCXOAUT Yepe3 KOHTPaKT TeH-
gepa. [Ipu sToM st KaxKJ10M OTKPBITON 3asIBKU IIPOUCXOJUT MPOBEPKA KOPPEKTHOCTH —
BBI3BIBACTCH IIPEIKOMIAIAPOBAHHBIN KOHTPAKT, KOTOPBIA MeHepUpyeT T0Ka3aTeJIbCTBO HA
OCHOBe IIPUBATHBIX JAHHBIX, U HMOJYIEHHOE T0KA3ATEIHLCTBO CPABHUBAETCSI C PAHEE 3apPeru-
CTPUPOBAHHBIM B PEeCTpe.

[Tonb3oBaTen paboTarOT ¢ KOHTPAKTAMH PEECTpa W TEHIEPOB He HAIPSIMYyI0, BBI3bI-
Basi ©X METOJIBI, a Yepe3 CIelrajbHble CMapT-KOHTPaKkThl osib3osareseit (User, Organizer,
Contractor). Dro 1O3BOJIsIET pean30BaTh pasrpaHUYeHre NPaB MoJb3oBaTe el (3aKa3ank
MOZKET O6'bHB.HHTb HOBBIC TEHAECPHI, & YIaCTHUK KOHKYPCa MOZKET TOJIBKO IIoJaBaTh 3adBKHU
Ha cymiecTBytoume ). Konrpakt xparut uapopManuio o nojb3osaresie u ajpec Ethereum-
aKKayHTa, K KOTOPpOMY OH IIPDUB#A3aH. TOJH)KO TpaH3aKIIUH, OTIIPpaBJE€HHbLIC OT UMEHU 3TOr'o
AKKAyHTa, CIATAIOTCH KOPPEKTHBIMHA, TTO3TOMY HUKTO, KPOME BIIAJIENIBIA aKKayHTa, HE MO-
2KeT coBepIliaTh ﬂeﬁCTBHH OT UMCHH 3TOI'O KOHTPaKTa. KpOMe TOTrO, JJId KazKI0T'0 3aKa31I1UKa
B KOHTpaKTe COXPaHACTCA CIIHMCOK O6'bHBJI€HHbIX UM TeHACPOB, a IJId KaxXXJI0I'0 y4YaCTHHKA
KOHKYpCa — BCe MTOJAHHBIE 3asIBKI.

Nudopmarnmst 060 Beex moJib30BaTe IsIX XpaHUTCs B peectpe nosibzosareseii (UserRegistry).

DTOT KOHTPAKT Peryaupyer nodaB/ieHre HOBBIX TOJb30BaTEIEH B CUCTEMY, & TaKXKe CMEHY
Ethereum-axxayunros, oT uMeHrn KOTOPBIX PabOTAIOT MTOIH30BATEIH.

CronT OTMETUTD, UTO Peau3alimst Beex JIeticTBui moap30BaTe /et B cucreMe Iepes Crie-
IMajbHbIe KOHTPakThl User BMecTe ¢ BO3MOXKHOCTBI) CMEHBI aKKAYHTA [TO3BOJISIOT PEITUTH
oy u3 (pyHIAMEHTAJBHBIX TpobeM OJIOKYeH-CHCTeM — MOTEPIO IPUBATHOIO KJIH0Ya aK-
kayaTa. OHA 3aKIH0YAETCST B TOM, ITO OTCYTCTBYET BO3MOXKHOCTH BOCCTAHOBJIEHUST TIPUBAT-
HOTO KJIFOUa aKKAYHTA, U [P €ro TOTepe TOIb30BATETb HE CMOYKET UCIIOIB30BATE ITOT aK-
KayHT JUIsT JajbHelel paboTsl B Ook4eiin-cucreme. B paszpaboranHoil cucreme B ciiydae
IOTEPH KJIF0YA €CTh BO3MOYKHOCTH CMEHUTDH aKKAyHT, HE M3MEHsIsI KOHTPAKT TI0JIb30BaTEISI.
[Ipu sToM mHDOPMaIUst 0 TOJIB30BATE/E U UCTOPHs ero jefcrBuit B cucreme (co3aaHum
TEHJIEPOB U TI0JIaYe 3a5BOK ) COXPAHSIIOTCH.

Ucnonp3oBanme mpoBepoK B KOJe (PYHKIMHM CMApPT-KOHTPAKTOB MCKJIOTAET BO3MOXK-
HOCTBH HAPYITIEHUsT yIACTHUKAME IPABUI TPOBEJIEHNST KOHKYPCHBIX 3aKYIIOK, TAKUX, KAK:

— 00bsIBIEHME TEHIIEPOB OT UMEHHU JIPYTOTO MOJIb30BATEIS;
— obbsBieHME TTOOEIUTE/IEM YIACTHUKA, 3asIBKA KOTOPOTO He OBLIA 3apPEerucTpUpOBaHa, 1

.. [27].

Bcee mpoBepku, KOTOpBIE OCYIIECTBISIIOTCST B CMAaPT-KOHTPAKTAX, TAPAHTUPOBAHHO BhI-
TIOJTHSTFOTCST, TaK KaK OJIOKIeHH-TPaH3aKIINN, KOTOPhIE He YIOBIETBOPSIOT YCJIOBUSIM B KOJIE
IPOBEPOK, OTKATHIBAIOTCS. JLJTsT peasm3anum mpoBEepOK MCIOIB3YeTC s CTaHIapTHAsST (DYHK-
st si3bika Solidity require().

Oyuxnust require() KOMIUIUPYETCst B HAOOD UHCTPYKIUH, KOTOPBIE OCYIIECTBIISIOT IPO-
Bepky yciosust, U uHerpykimioo REVERT (0xfd) supryansroit mamuusr Ethereum, k xo-
TOPOI TIEPEeXOUT yIpaBJIeHWe B CIydae, KOTJA YCIOBHE He BBINOJHsIeTCs. Keam BO Bpe-
M$I BBITIOJTHEHUST KOJIa CMapPT-KOHTPAKTA B BUPTYAJbHON MAaITiHe BCTPEIaeTCsI MHCTPYKITHST
REVERT, Boimosnenue kKojia OCTAHABIUBAETCS, & BCE U3MEHEHUsI, MPOU3BEICHHBIC TPaH-
3akImei, OTMEHSIOTCs1. Takoll OTKAT BCEX M3MEHEHUH ITO3BOJISIET COXPAHUTL ATOMAPHOCTH
tpanzakimu. 1Ipu 9T0M cama TpaH3aKIHsI cOXpaHseTcst B OoKIelHe.

KoaTpaxThl SIBASIOTCST 9aCTBIO MPOTOKOIA M YTBEPXKIAIOTCST YIACTHUKAMU JI0 CTAPTA
paboOThI CHCTEMBI.
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Bo Bpemst paboThl crcTeMbI MOTYT CO3/IaBATHCST HOBBIE OOBEKTHI KOHTPAKTOB JIBYX TH-
o — User u Tender. OmHaxo ux co3ganme TpOU3BOIUTCS HE HATIPSIMYTO MTOJIb30BATEISIMHE, a
gepe3 kouTpakThl UserRegistry u Registry coorBercrBento, T. e. cam ko koHTpaxToB User u
Tender mpeaBapuTe/IbHO CKOMITMTUPOBAH U WHTEIPHPOBAH B KO/ KOHTpakToB UserRegistry
u Registry. ¥V mosp3oBaTesneil oTcyTCTBYeT BO3MOKHOCTD T0OABISITH CBOM COOCTBEHHBIE De-
AJTMBATTAN KAKUX-THO0 KOHTPAKTOB.

Ecmu B potiecce paboThl 00HAPYKUBAIOTCST OMMUOKN B CMApPT-KOHTPAKTAX, OHU MOTYT
OBITH WMCIPABJIEHBI B HOBBIX BEPCHUSX ITUX Ke KOHTPaxToB. [lepexor Ha HOBYIO BepCHIO
OCYIIECTBIISIETCST TOJIBKO B CJIydIae OJ00PeHUsI M3MEHEHUH yIaCcTHUKAMU CHCTEMBI.

BzanmosetictBue ¢ mpeKOMIHINPOBAHHBIMUA CMAPT-KOHTPAKTAME HE MOXKET OBITH Pe-
AJIM30BAHO cpencTBaMu sizbika Solidity, /utst BeI3oBa Koma (DYHKIUH TAKUX KOHTPAKTOB HC-
IOJIB3YIOTCsT accembiepHble BetaBku. st ymobersa paboThl cozmana Solidity-6ubamorexa.
OHa WHKAIICYIMPYET HU3KOYPOBHEBOE B3AUMOJEHCTBHE C IMPEIKOMITMINPOBAHHBIMH KOH-
TpaKTaM¥ U TpefocTapisier naTepdetic mist paborsl ¢ HuMu B Buje Solidity-dyrimii.

5. Aaroputm paboTbl CUCTEMBbI

Pacemorpum 6ostee ogpobHO aaroputM paboTel cucTeMbl. MOXHO BBLIEIUTE CIEIYIO-
e 3Tallbl IIPOBEACHU A TEHIEPa:

1) 3axaszuuk cosuaér koHTpaxT Tender, B KOTOPOM pasMeniaeT BCH HEOOXOIUMYH) HH-
dopMaImo 0 TPOBOIUMOM KOHKYPCE.

2) Tlosb3oBaTen MONAIOT CKPBITHIE 3asiBKYU B OOIIHIT PeecTp TEHIEPOB.

3) llocsie okoHUaHUST CpOKa IPUEMA 3asIBOK IOIE30BATEIN BCKPBIBAIOT 3asiBKU (OTIIPaB-
JISTEOT OTKPBITYI0 uHpOpManuio B KOHTpakT Tender co cCbLIKON Ha CKPBITYIO 3asiB-
Ky). Bee zasiBku, koTOpbie He ObLIN BCKPBITHI, AaHHYIUPYIOTCS.

4) Tlocsie okoHYAHUS CPOKA [TPEJIOCTABIEHUST OTKPBITOW HH(MOPMAIINT 3aKa3IUK OIEHU-
BaeT 3asiBKU W OTPEJIEseT T00eIUTe sl

OtnesbHBIE KPYITHBIE TATBI JAHHOTO AJTOPUTMA — MOJIAYa CKPBITOW 3asIBKU M PACKPDI-
e THQMOPMAIIIH.

5.1. [lpomecc mogadu cKpHITON 3asIBKU

[Iporecc mojayuu CKPBITON 3asIBKU, CXEMATHYHO MPEJICTABJICHHBIN Ha pUC. 4, TPOXOIAT
CTIEIYIOITM 00PA30M:

1) TombzoBartesnsb co3naéT HOBBIH aHOHUMHBIH Ethereum-akkayHT.

2) Tlocse sroro nosw3oBaresb (GOPMUpPYET 3asiBKY Ha BBIODAHHBIH TEHJIED, KOTOpast
COZIEPKUT HeoOXOMMbIe TpuBaTHbIe fganuble (1D yuacrauka, 1D Tenzepa, Tekyimee
BpeMsi, CYMMY IIPEJJIOKEHMUS] ).

3) Ha ocHOBe NpUBATHBIX JAHHBIX 3as1BKU CO3IAETCsSI IIyOIMIHOE 10KA3ATENbCTBO. [ist
sroro depes JSON-RPC API momudunuposannoro Ethereum-ximnentTa BeI3biBaeTcst
(pyHKIMST TeHepaIi TOKA3aTeILCTBA KPUITTOIPAUIECKON CXeMbl JOKA3aTeTHCTBA
€ HYJIEBBIM PA3IJIAIIECHUEM.

4) anee or UMEHM aHOHUMHOTO aKKAYHTA MOJIB30BATE/b OTIPABJISIET JOKA3ATEIHCTBO
B KOHTpakT Registry.

5) Cwmapr-korTpaxT Registry ocyiecrsiisier IpoBepKy KOPPEKTHOCTH JOKA3ATEIbCTBA,
BBI3BIBAsT KOJ MPEIKOMITMINPOBAHHOIO KOHTpaKTa Bepudmkarmu. Fcemm mposepka
poiJIeHa YCIIEITHO, 3asBKa 3alUChIBacTCs B Xpanuauiie Konrpakra Registry. B mpo-
TUBHOM CJIydae 3asiBKa CIMTAeTCs] HEKOPPEKTHON U OTKJIOHSIETCS.

Braronapst oMy, 9T0 JJ1s1 KQXK0M MOJIAYN 3asIBKU TeHEPUPYETCs HOBBIM aKKAYHT, HEJIhb-
351 OTCJIEUTH, KTO IMEHHO 3aIIMCHIBACT MyOIUIHOE TOKA3ATEIHCTBO. DTO 00eCIeYnBaeT CO-
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Puc. 4. UML-gmnarpamma nocriefoBaTe/lbHOCTU MpoLecca Nofgayvn CKpbITOM 3asBKU

KPbITUE He TOJIbKO MPUBATHbIX AAaHHbIX 3asiBKM, HO M CAMOro (hakTa nogaym rnosib3oBaTesiem
3as5iBKM Ha KOHKPETHbIV TeHaep.

CTOUT OTMETUTb, YTO MepBble TPWU LUAra ONMUCaAHHOr0 asIrOPUTMa BbIMOSTHATCA BHE
6/10K4YeliHa, MO3TOMY CeKpeTHas MHopMaLVsa He BUAHA HUKOMY, KPOME CamMoro Mosib30-
BaTesnsi.

52. MMpouyecc pacKpblTUA 3aaBKMN

Mocne okoHYaHMS cpoka Npuéma 3asiBOK HauMHaeTCcsa 3aTan packpbiTUA MHGopMaumnm
(puc. 5). Ha aTtom 3Tane:

1) TMonb3oBaTesib OTMPAB/IAET PacKpbITbie AaHHble B KOHTPaKT Tender, yka3sblBasi CCblSI-
Ky Ha 3aKpbITYIO 3a5BKY.
2) KoHTpakT TeHAepa 3anpalimBaeT U3 KOHTpakTa Registry 3aperucrtpuposaHHoe [0-
KasaTesibCTBO.
3) [Jasnee BbI3biBAETCA NMPEAKOMMUANPOBAHHbIM KOHTPAKT, KOTOPbI/ Ha OCHOBE pacKpbl-
ThIX NPUBAaTHbIX AaHHbIX FreHepupyeT AoKas3aTes/bCTBO.
4) Tlocne 3TOro KOHTpakT Tender Npou3BoAUT pPAL NPOBEPOK:
— [pepocTtaBneHHaa MHMOpPMaLMs COOTBETCTBYET paHee 3aperucTpmpoBaHHOMN
B peecTpe 3aKpbITOW 3asBke. 15 3TOro npounsBognTCA CpaBHeHUe CreHepu-
pOBaHHOIO A0Ka3aTesIbCTBO C COXPaHEHHbIM B peecTpe. VX coBnageHme cBu-
[eTenbCTBYET O TOM, UTO AOoKa3aTesibCTBa CreHepMpoBaHbl HA OCHOBE OAHUX U
TeX >Ke MpuBaTHbIX AaHHbIX U 3asdABKa SIBNiAeTcA Noa/IMHHONA. Ecnin oHM He coB-
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nagatT, 3TO 03Ha4yaeT, UTO AOoKa3aTesIbCTBO, COOTBETCTBYHOLLEE MogaBaemMol
OTKpPbITOW 3asBKe, He 6bI10 3aperncTprupoBaHoO Ha aTane 3anpoca npeasoxe-
HWUI, N Takas 3asiBKa, CorsiacHo rnpaswiam MNpoBeAeHUsl TEHAEPOB, He MOXKET
nprvHUMaThb yyacTme B KOHKYypcCe.

— ID nonb3oBaTens B 3asBKe coBnagaeT ¢ ID nonb3oBaTens, KOTOPbIA oTNpas-
NnAeT AaHHbIe.

— |ID TeHpgepa B 3asBKe coBnagaeT ¢ ID TeHaepa KoHTpakTa.

5) [Mpu ycrewHoM NpPOXOXKAEHWUM MPOBEPOK MpeaocTaBfieHHass WH(OpPMaLUs COXpaHs-
eTcsl B KOHTpPaKTe.

Puc. 5. UML-gmnarpamma nocnefoBaTe/ibHOCTM MpoLecca PacKpbITUA 3adBKU

CTOUT OTMETUTb, 4YTO MPU PaCKPbITUX 3asIBOK M0J1b30BaTe/lb MPOU3BOANT AelcTBUS
B 6/10KYEH-CETN OT UMEHM CBOEr0 aKKayHTa. OTO MO3BOJISIET YAOCTOBEPUTHLCA B JIMUHOCTU
Mosib30BaTesisd U UCK/TIUYUTL BO3MOXXHOCTb MOAauun 3asiBKM OT /LA APYroro yyacTHUKa.

AJITOPUTM paboTbl CUCTEMbI, B OCHOBE KOTOPOIO JIEXXUT MPOTOKOJ1 A0KA3aTe/IbCTBA C HY-
NIEBbIM pasr/jialleHVEM, KPOME BO3MOXXHOCTM MPOBEPSATb KOPPEKTHOCTb MHGopMauun npu
rnofjave 3asiBKW, JaET elg HECKO/IbKO NPENMYLLIECTB.

Bo-nepBbIX, Y>Ke Ha 3Tane nogayun 3asiBoK MOXHO cobupaTtb CTaTUCTUKY, KOTopasi MOXKET
6bITb MCMNO/Ib30BaHa AJ/1 Pa3/INUHbIX Liefei.

Bo-BTOpbIX, MPU PacKpbITUM 3asiBOK MOXXHO MPeAoCcTaB/IATh B OTKPbITOM BUAE TOSBKO
HEeKOTOpble AaHHbIE, FAPAHTUPYS KOPPEKTHOCTb BCEM OCTasIbHOM MHopMaLmn.

B-TpeTbMx, eCTb BO3MO>XHOCTb pPeasin3oBaTbh a/IrOPUTM MPenocTaB/iEHUS MHQOpMaLUn
TO/IbKO OTAE/IbHbIM YUYacTHVIKAM Ha aTane BCKPbITUS 3asBOK. TaKoi a/iropyuTtM MoOXKeT 6bITb
MPUMEHEH B CUCTEMAX 3aKPbITbIX TEHAEPOB, FAe MHPOPMaLUS 0 PACKPbLITbIX 3asiBKaXxX [A0S1K-
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Ha OBITH JOCTYITHA TOJBKO OPraHUu3aTopy 3aKylku. [Ipu 3ToM 3a CU4ET MCIOIBL30BAHUST AJl-
TOPUTMOB AO0Ka3aTe/JIbCTBa C HYJICBBIM Dpa3lJIalllIcHHMEM BCE OCTaJIbHBbIE YIaCTHHUKH CMOT'YyT
IPOBEPUTH KOPPEKTHOCTDH TOJAHHBIX 3asIBOK U YIOCTOBEPUTHCS, ITO OO UTETH TEHIEPA
BBIOpaH COIJIACHO MpaBUJIaM, He TOJIydast JOCTYII K caMoi MH(pOPMAaIUK 3as1BOK.

Taxum 06pazoMm, peaTn30BaHHBIN AJITOPUTM AT Hostee HoraTbie BOSMOXKHOCTH TSI PAC-
muperust (hyHKITMOHATBHOCTH CHCTEMBI.

6. Pa3zpépThiBaHHE CUCTEMBI

PaseéprhiBanme 000 mporpaMMHON CHCTEMBI, CO3JaHHOW Ha 06aze 1wraT(OPMBI
Ethereum, moxeT OBITH OCYIIECTBIEHO JBYMsI OCHOBHBIMH CIIOCOOAMMU:

— B ocHOBHOIT 610K4eltH-cetn Ethereum (Ethereum Mainnet);
— B cobeTBeHHOM Gt0KUeiH-ceTn.

PaszpaboranubIit MeTosn COKPBITUST TPUBATHON MHMOPMAIINK TTOJIAraeTCsl Ha MOTH(pUKA-
1, BHeceHHble B Ethereum-ximent, a BHenpenne momuduimposanubix Ethereum-xmmen-
TOB B OCHOBHYIO CeThb HEBO3MOXKHO M3-38 HECOBMECTHUMOCTH ITPOTOKOJIA ¢ OOBITHBIMU Y3714~
Mu. BBI30B mpenxoMIMInpOBaHHBIX KOHTPAKTOB Oy/IeT HEBO3MOXKEH Ha OOBIYHBIX y3JIaX,
a4 MEeXaHW3M KOHCEHCYCa IOJIaraeTCsl Ha TO, YTO BCE OIEePAINN JIOJIKHBI OJIMHAKOBO BbI-
IOJTHSITHCST HA BeeX y3yax Ojoxkueiin-cetu. [losroMy miast cmucreMbl TIPOBEEHUsT TEHIEPOB
HEOOXOIMMO Pa3BEPHYTH COOCTBEHHYIO OJIOKUEHH-CeTh, COCTOSIIYIO U3 Y3JI0B, HMOIIEPKUBA-
FOIUX BHECEHHBIE MOIUMPUKAIIAA. JTO MOIYT OBITH Momuduimposanube Ethereum C++
KJIHEHTHI, KOTOPBIE OMMCAHBI paHee, JOo JI00bIe IPyThe KJIUEHTHI, B KOTOPBIX 100aBIe-
HBI TIPEIKOMITHINPOBAHHBIE KOHTPAKTHI ¢ TEMHU K€ aJpecaMi U Pean3yoIie OMUCAHHY 0
KPHUITOIPAPUIECKYI0 CXEMY JTOKA3ATEIbCTBA € HYJIEBBIM Pa3TJIAIICHIEM.

[TockompKy TpeIo/IaraeTcst NCIOIB30BATE OTIEBHYI0 OJIOKUIEHH-CeTh, MEXAHU3M OILIa-
TBI JIeHCTBUH B CHCTEME MOXKET PEryJUpPOBATHCS COOOIMECTBOM YIACTHUKOB IIYTEM OIpe-
JICJIEHUAS CBOWX IIPABWJ IIOBEPX CYIIECTBYIOMEH CTAaHAAPTHON CXEMBI OILIATHI TPAH3AKITANA
B Ethereum. Hampumep, B3uManme KOMUCCHE MOXKHO TIOJTHOCTBIO OTMEHHUTH. Kpome Toro,
B OTJ/IEJIbHON OJTOKIeHH-CEeTH KOJUIeCTBO TPAH3AKITHH JTOKHO OBITH 3HAYUTETFHO MEHBITIE,
ueM B ocHOBHOM cetn Ethereum, uro yBesmmauBaer mpoOMyCcKHYIO CIIOCOOHOCTH CHCTEMBI.

st paborel kpunrorpaduaeckoil cxembl HeOOXOMMa Tapa Kiodell (JokazareaberBa
u Bepudukarmn). Mx reneparust 10/KHA BBITOJHSTHCSL JIOBEPeHHOM cTropoHoit. [lomyuns-
IITHeCsT B Pe3y/IbTaTe OTKPBITHIE TTapaMeTPhI IyOIUKYIOTCS U CTAHOBSITCST JOCTYITHBIMU JIJTsT
Bcex cTOPOH. B paszpaboraHHOl cucTeMe KJIIOUN MEPeIalTcsl B KAIeCcTBe KOH(MUTYPAITHOH-
HbIX aitos npu crapre Ethereum-xmmenta. [lpotece remeparmu Kto4ueil BBITOIHSIETCST
TOJIBKO OJIMH Pa3, MOC/e 9TOrO JOBEPEHHAsI CTOPOHA He TpedyeTcs.

DTa daza sBISIETCST KPUTUIECKOW ¢ TOYKHU 3peHust be3omacHocT cucteMbl. JI106oi, KTo
obsastaer mapaMeTpoM 6E30MacHOCTH, HA OCHOBE KOTOPOTO CTEHEPUPOBAHBI KJTFOUH, ITOJIY-
YUT BO3MOYKHOCTH T€HEPUPOBATDH JIOXKHBIE JTOKA3ATEIHCTBA, KOTOPBIE OYIYT MPUHSTHI aJl-
TOPUTMOM BePU(PUKAITMH KaK KOppekTHbe. [losToMy mpu BHEIPEHUN CHUCTEMBI TIPOTIETYPe
TeHePAITNN CTOUT YIEIUTh 0coboe BHUMaHMe. Kak mpaBuio, NCIOMb3YIOTC MHOTOCTOPOHHIE
IPOTOKOJIBI J1jTsT OE30TTACHON TeHepaIlni TapaMeTPOB, KOTOPBIE Taf0T BOZMOYKHOCTE He TI0J1a-
raThCs HA YECTHOCTH €IMHCTBEHHOTO YIACTHUKA. B mporecce MHUIIMATU3AIINN TaPpAMETPOB
YYIACTBYET PsiJi CTOPOH, UCTIOIB3YIOITUX MHOIOCTOPOHHUN TPOTOKOJ JIJTsT TEHePAITNN KJTIoUett
JIOKa3aTebCTBa U Bepudukanmn. st obecrievenst HAIEKHOCTH CO3TAHHON KPUIITOTPapU-
YeCKON CXeMBbI JOCTATOTHO, YTOOBI XOTsI OBI OJTHA U3 CTOPOH ObLiTa decTHa. PacrpeneéHubrit
IPOTOKOJI rereparmu napamerpos st zk-SNARK npusenén B [16].
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3akJirouenue

[Ipennoxkena u peajmmnsoBaHa CHUCTEMa TEHIEPOB, KOTOPAsl YAOBIETBOPSET KPUTEPHUIM
6e30ITaCcHOCTH, OTKPBITOCTH W KOH(UIEHITHAILHOCTH. Bompoc moBepust permén ¢ moMoIbio
TEXHOJIOTUH OJIOKYENH, a COKPBITHE MPUBATHOM WHMOPMAIINN — ¢ TOMOIIBI0 aJTOPUTMOB
JIOKA3aTeIHCTBA € HYJIEBBIM Da3TJIAIIICHIEM.

Paszpaboran mpuHIMIMAIBEHO HOBBI METOJ, TO3BOISIONIAN PEITUTE TPOHIEMY TPUBAT-
HOCTH WH(pOPMAUu B OJI0KIeHH-ccTeMaX ¢ UCIOIB30BAHIEM AJTOPUTMOB JIOKA3ATEIHCTBA
¢ HyJIeBBIM pasriariernuemM. Mertos mosBossier yaacTHUKaM 3a(UKCHPOBATH (DAKT TOTAYTH
3asIBKUM Ha TEHIED, He PACKPBIBasl €€ COMEPIKAHUS.

[IpemmoxeHubIit 1 peagM30BaHHBIM METOM MOXKET OBITh WCIIOIB30BAH HE TOJIBKO JJIsT
TEHJIEPOB, HO U B JIPYTHUX CUCTEMAX, TJIe €CTh HEOOXOIMMOCTh CKPBIBATH IaCTh WH(DOPMAITIT
B OTKPBITON Osokuetin-ceru. OH paciupsier 00JaCTh TPUMEHEHHs TEXHOJIOTHH OJI0KIetH
B IIPOMBINLIEHHBIX TPOIPAMMHBIX KOMILIEKCAX.
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ABSTRACT KEYWORDS

Problems and their solutions of the Fifth International Students’ hash functions; Enigma;
Olympiad in cryptography NSUCRYPTO'2018 are presented. We ~ duantum circuits; metrically
consider problems related to attacks on ciphers and hash regular sets; irreducible
functions, Boolean functions, quantum circuits, Enigma, etc. We polynomials; orthogonal

di | bl h | vl arrays; Sylvester matrices;
iscuss several open problems on orthogonal arrays, Sylvester disjunct matrices;

matrices, and disjunct matrices. The problem of existing an Olympiad; NSUCRYPTO
invertible Sylvester matrix whose inverse is again a Sylvester
matrix was completely solved during the Olympiad.

Introduction

NSUCRYPTO—The International Students’ Olympiad in cryptography—
celebrated its 5-year anniversary in 2018. Interest in the Olympiad around
the world is significant: there were more than 1,600 participants from 52
countries in the first five Olympiads from 2014 to 2018! The Olympiad
program committee includes specialists from Belgium, France, The
Netherlands, USA, Norway, India, Belarus’, and Russia.

Let us shortly formulate the format of the Olympiad. One of the Olympiad
main ideas is that everyone can participate! Each participant chooses his/her
category when registering on the Olympiad website nsucrypto.nsu.ru. There
are three categories: “school students” (for junior researchers: pupils and high
school students), “university students” (for participants who are currently
studying at universities), and “professionals” (for participants who have
already completed education or just want to be in the restriction-free
category). Awarding of the winners is held in each category separately.

The Olympiad consists of two independent Internet rounds: the first one
is individual (duration 4 hours 30 minutes) while the second round is team
(duration 1week). The first round is divided into two sections: A—for

CONTACT A. Gorodilova @ gorodilova@math.nsc.ru e Novosibirsk State University, Novosibirsk, 630090 Russia;
Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia.
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“school students,” B—for “university students” and “professionals.” The
second round is general for all participants. Participants read the Olympiad
problems and submit their solutions using the Olympiad website. The lan-
guage of the Olympiad is English.

The Olympiad participants are always interested in solving different
problems of various complexities at the intersection of mathematics and
cryptography. They show their knowledge, creativity, and professionalism.
That is why the Olympiad not only includes interesting tasks with known
solutions but also offers unsolved problems in this area. This year, one of
such open problems, “Sylvester matrices,” was completely solved by three
teams! All the open problems stated during the Olympiad history can be
found at nsucrypto.nsu.ru/unsolved-problems. On the website we also mark
the current status of each problem. For example, in addition to “Sylvester
matrices” solved in 2018, the problem “algebraic immunity” was completely
solved during the Olympiad in 2016. And what is important for us, some
participants were trying to find solutions after the Olympiad was over. For
example, a partial solution for the problem “A secret sharing” (2014) was
proposed in Geut et al. (2017). We invite everybody who has ideas on how
to solve the problems to send your solutions to us!

The paper is organized as follows. We start with problem structure of
the Olympiad in each section (Problem structure of the Olympiad). Then
we present formulations of all the problems stated during the Olympiad
and give their detailed solutions in each section (Problems and their solu-
tions). Finally, we publish the lists of NSUCRYPTO2018 winners in each
section (Winners of the Olympiad).

Mathematical problems of the previous International Olympiads
NSUCRYPTO’2014, = NSUCRYPTO’2015,  NSUCRYPTO’2016, and
NSUCRYPTO’2017 can be found in Agievich et al. (2015, 2017), Tokareva
et al. (2018), and Gorodilova et al. (2019), respectively.

Problem structure of the Olympiad

There were 16 problems stated during the Olympiad, and some of them
were included in both rounds (Tables 1 and 2). Section A of the first round
consisted of six problems, whereas section B contained seven problems.
Three problems were common for both sections. The second round was
composed of 11 problems. Three problems of the second round were
marked as unsolved (awarded special prizes from the Program Committee).

Problems and their solutions

In this section we formulate all the problems of NSUCRYPTO’2018 and
present their detailed solutions paying attention to solutions proposed by
the participants.
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Table 1. Problems of the first round.

Section A

N Problem title Maximum scores
1 A digital signature 4

2 Jack and the Beanstalk 4

3 Key matrices 4

4 A sequence 4

5 Solutions of the equation 4

6 Stickers 6
Section B

N Problem title Maximum scores
1 Stickers 6

2 Key matrices 4

3 A sequence 4

4 Quantum circuits 4

5 Bash-S3 8

6 Metrical cryptosystem—2 6

7 A fixed element 10
Table 2. Problems of the second round.

N Problem title Maximum scores
1 A digital signature 4

2 Orthogonal arrays Unsolved

3 Hash function FNV-1a 8

4 TwinPeaks?2 6

5 An Enigmatic Challenge 8

6 Sylvester matrices Unsolved

7 Stickers 6

8 Bash-S3 8

9 Metrical cryptosystem—2 6

10 A fixed element 10

1 Disjunct Matrices Unsolved

Problem “A digital signature”

Formulation
Alice uses a new digital signature algorithm, that turns a text message M into
a pair (M, s), where s is an integer and generated in the following way:

1. The special function h transforms M into a big positive integer r = h(M).
2. The number t = r? is calculated, where t = t,f, ... t,.
3. The signature s is calculated as s =t; +t, + - - - + 1.

Bob obtained the signed message
(Congratulations on the fifth year anniversary of NSUCRYPTO!, 2018)

from Alice and immediately recognized that something was wrong with the
signature! How did he discover it?

Remarks. By t = t,£,...f, we mean that t,,1,,...,t, are decimal digits and all
digits under the bar form decimal number ¢.
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A
A
N '

a) octagram b) solutions by the participants

Figure 1. Lines and seeds.

Solution

It is widely known that every integer is congruent to the sum of its digits
modulo 3. So, we have that t =; 2018 =; 2. But t is equal to 7 and a
square can not be equal to 2 modulo 3. Thus, we have a contradiction.

We got a lot correct solutions. The most accurate and detailed solutions
were sent by Ruxandra Icleanu (Tudor Vianu National College of Computer
Science, Romania), Petr Ionov (Yaroslavl State University, Russia), and the
team of Henning Seidler and Katja Stumpp (TU Berlin, Germany).

Problem “Jack and the Beanstalk”

Formulation

Little Jack is only 7 years old and likes solving riddles involving the powers
of two. Recently, his uncle Bitoshi gave him 16 BeanCoin seeds and prom-
ised that Jack can collect all BeanCoins which will grow from these seeds.
But in order for BeanCoins to grow big and fruitful, Jack must plant
the seeds in the garden in a special way. He has to draw eight lines on the
ground and plant all 16 seeds on these lines in such a way that each of
the lines contains exactly four seeds.

Can you help Jack to achieve his goal and suggest how to plant the seeds?

Solution

The seeds can be placed on the corners and intersection points of an octa-
gram, as depicted in Figure la. As is clear from this figure, all eight lines
contain exactly four seeds and it is impossible to draw other line contained
exactly four seeds.

Many school students found interesting ways to draw these lines, for
example Figure 1b. The most interesting ones were given by Gorazd
Dimitrov (Yahya Kemal College, Macedonia), Artem Ismagilov (The
Specialized Educational and Scientific Center UrFU, Russia), and Igor
Pastushenko (The Specialized Educational Scientific Center of Novosibirsk
State University, Russia).
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Problem “Key matrices”

Formulation
Let n be an odd positive integer. In some cipher, a key is a binary n x n matrix

a1 a2 ai,n
a1 42 ... d2n

A — >
ap,1 On2 N R

where a;; is either 0 or 1, such that each diagonal of any length
1,2,...,n—1,n contains an odd number of 1s.

What is the minimal and the maximal number of 1s that can be placed
in a key matrix A?

Remarks. For example, for n =3, diagonals are the following ten lines:

Solution
The correct solution of this problem must consist of two steps. The first step
is to find theoretical lower and upper bounds for the number of 1s, and the
second step is to prove that these bounds are tight. The best solution was pro-
posed by Aleksei Udovenko (University of Luxembourg), which we pro-
vide below.

1. Minimum. Consider the n x n matrix A (n is odd) with both the top
row filled with 1s, the bottom row filled with 1s, and the central cell equal
to 1; all other elements are 0:

ayi =1, 1<i<wm;
ani=1, 1<i<m
A(nt1)/2, (n+1)/2 = 13

ai; =0, otherwise.

Any diagonal of length less than # — 1 includes exactly a single 1 (either from
the top row or from the bottom row). The two diagonals of length » include
three 1s (one from the top row, one from the bottom row, and one from the
center). Therefore, this matrix satisfies the condition. It has 2n + 1 1s.

We now prove that this number of 1s is minimal. Note that each corner cell
ai,1, a1, n> An, 1, dn, n Makes a single element diagonal. Therefore, these cells must
contain 1s. There are 2(n—2) diagonals going in the down-right direction and
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not touching the corners (starting from the cells of the leftmost column and
from the cells for the topmost row). Furthermore, the main diagonal without
the corner cells must have an odd number of 1s too. Therefore, 2n—3 disjoint
diagonals must contain at least one 1, in addition to 4 corner 1s. Therefore,
there should be at least 2(n—2) + 1 + 4 = 2n + 1 1s in the matrix.

2. Maximum. Consider the n x n matrix A (n is odd) filled with 1s except
cells in the leftmost and the rightmost columns which have an even row
index:

az,"lzo, 1§l§<1’l—1)/2,
(le,')n:O, 1§l§<1’l—1)/2,
aij =1,  otherwise.

It is easy to check that all diagonals that contain an even number of ele-
ments contain a single zero either from the leftmost or from the rightmost
column. Therefore, these diagonals have an odd number of 1s. Also, all
diagonals that contain an odd number of elements contain no zeroes and
thus have an odd number of 1s too. Therefore, this matrix satisfies the con-
dition. It has n*~2(n—1)/2 = n*-n+1 1s.

We now prove that this number is maximal. Consider diagonals going in the
down-right direction that have an even number of elements. There are
2(n—1)/2 = (n—1) such diagonals and they are disjoint. Each of them must con-
tain at least a single zero. Therefore, the maximum number of 1sis n*—n + 1.

Problem “A sequence”

Formulation

Two friends, Roman and Anton, are very interested in sequences and
ciphers. Their new cryptosystem encrypts binary messages of length n, X =
(x1,%2, ..., X,), Where each x; is either 0 or 1. A key K of the cipher is a set
of n integers ai,ay,...,a,. The ciphertext Y for the message X encrypted
with the key K is the integer

Y:xl.al+x2.a2+...+xn.an.
Roman and Anton change their key regularly. Today, the key K is
defined by
ai=2"+(=1) forall i=1,..,n

The friends can easily decipher any message using the key defined by
this sequence for any n!

1. Prove that the encryption is correct for this key K for any #: there are no two
distinct input messages X' and X* such that their ciphertexts Y and Y* are
equal, ie., Y! = Y2
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2. Describe an algorithm which can be used to easily decipher any cipher-
text Y encrypted with today’s key K. Here “easily” means that the algo-
rithm should work much faster than checking all possible variants for
an input message X.

Solution
Let us firstly show that the sequence {a;} is superincreasing, i.e., a;; >
S, ax for any i>0. Indeed,

Doae=3 (2 (1) =224 3o (1)
k=1 k=1 k=1
B {2"“—2, if i is even

i+1 i
213 ifiisodd 20+ =0 = a

1. Let us show that the encryption is correct. Let X' = (xj, ...,x}) and
X? = (x},...,x2) be two distinct messages, and i is the largest position

such that x; # x7. Without loss of generality, suppose that x] = 1. Then

Y'Y= (x{ a1+ +x -ai+-+x.a,)
_(x%.a1+...+xi2.ai+...+xf’.an)
= (x—x}) a1+ -+ (x_,—x7 ) ai +a; >0

since {a;} is a superincreasing sequence.
2. The correctness of the decryption algorithm (Algorithm 1) is also based

on the superincreasing property of {a;}. The complexity of the
algorithm consists of # integer comparisons.

Algorithm 1. The decryption algorithm

Input: Y, n.

Output: X = (x1, ..., x,).

Step 0. T:=Y,i:=n.

Step 1. If T > a;, then x; = 1; else x; = 0.

Step 2. T := T—x; - a;,i :== i—1. If i >0, go to step 1; else return X.

The problem was solved by the majority of participants including eight
school students.
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Problem “Solutions of the equation”

Formulation

Alice is studying special functions that are used in symmetric ciphers. Let E"
be the set of all binary vectors x = (x1, X2, ..., X,;) of length n, where x; is either
0 or 1. Given two vectors x and y from E" consider their sum x®y =
(x1 D y1, ... x, D yy), where @D is addition modulo 2.

Example. If n=3, then E> = {(000), (001), (010), (011), (100), (101), (110),
(111)}. Let x=(010) and y = (011), then vector x®y is equal
to (010)® (011) = (0 0,1D 1,0 1) = (001).

We will say that a function F maps E” to E" if it transforms any vector x
from E” into some vector F(x) from E".

Example. Let n=2. For instance, we can define F that maps E* to E* as
follows: F(00) = (00), F(01) = (10), F(10) = (11) and F(11) = (10).

Alice found a function S that maps E° to E® in such a way that the vec-
tors S(x) and S(y) are not equal for any nonequal vectors x and y. Also, S
has another curious property: the equation

S(x)DS(xDa) =10

has either 0 or 2 solutions for any nonzero vector a from E° and any vector
b from E°.

Find the number of pairs (4, b) such that this equation has exactly
two solutions!

Solution
Consider a function S that satisfies the conditions of the problem. Let us
tix an arbitrary vector a that is nonzero. Consider the set B, of all possible
values of S(x)@S(xDa), ie, B, ={S(x)DS(xPa) | x € ES}. It holds
that |B,| =2°, since S(x)DS(xDa)=S(xDa)DS(xDada). Then for
every nonzero a there exist 2° values of b, such that S(x) D S(x@a) =b
has two solutions. Then the number of pairs is equal to 63 * 32 = 2016.
Correct answers were sent by only three school students: Alexey Lvov
(Gymnasium 6 of Novosibirsk, Russia), Borislav Kirilov (The First Private
Mathematical Gymnasium of Sofia, Bulgaria), and Razvan Andrei Draghici
(National College Fratii Buzesti, Romania).

Problem “Quantum circuits”

Formulation
Alice and Bob are interested in quantum circuits. They studied quantum opera-
tions and would like to use them for their simple cipher. Let an input plaintext
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Table 3. Quantum gates and circuit symbols.

Pauli-X gate o) —X|— |z 1) Acts on a single qubit in the state |x),x € {0,1}.
Controlled-NOT gate |x) —e—— |x) Acts on two qubits in the states |x), |y), x,y € {0,1}; it
(CNOT gate) . o flips the second qubit if and only if the first qubit is
lv) ly @ x) :
in the state |1).
Toffoli gate |z) —e—— |z) Acts on three qubits in the states
(CCNOT gate) ly) —e— |y) [x), ), |2).x,y,z € {0,1}; it flips the third qubit if

26 (x Ay)) and only if the states of the first and the second
ZwTAY qubits are both equal to |1).

|) x A measurement of a qubit in the state |x),x € {0,1},

in the computational basis {|0),|1)}.
A wire carrying a single qubit (time goes left to right).
A wire carrying a single classical bit.

be P = (p1, p2, - p1s) € F3°. The ciphertext C € F}° is calculated as

C= K® (F(Pl, ---,P4)>F(P5, ---,P8)>F(P9, ---;plZ)aF(pHn ---,P16)),

where K € F1° is a secret key and F is a function from Fj to F3; ® is bit-
wise XOR.

The friends found a representation of F from wires and elementary
quantum gates which form a quantum circuit. They use Dirac notation and
denote computational basis states by |[0) and |1). Further, quantum bits
(qubits) are considered only in quantum states |0) and |1). Alice and Bob
used the following quantum gates and circuit symbols which are given in
Table 3.

A quantum circuit which describes action of F on x = (x1,%,x3,%4) €
F;, where F = (fi,fo.fs.fs) and f,i=1,2,3,4, are Boolean functions in
four variables, is the following:

|z1) Ed —A— fi)
|z2) [X] uij A= fa(x)
|z3) [X] [ A= fs(a)
|z4) [x] [X] GL/ A= fi(@)

The problem. The friends encrypted the plaintext P =
(0011010111110010) and got the ciphertext C = (1001101010010010). Find
the secret key K!

Solution
One can notice that the given circuit can be simplified by observing that
the following evolutions
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1) (X} e A A= fi@)
22) ] o A= h(@)
|3) ‘F 777777 T‘ @—4 f3(z)
) ] ) S N : x] A— £i)

actually swap two states |x), [y),x,y € {0,1}:

lv) |z) ly) |)

Both of the evolutions

o) o g TA— i)
22) X A— n)
l23) O X A= @)
22 x] c X e A= A

have form

|=)

[y)

lzey®1)

2

BE

for |x),[y),x,y € {0,1}.
The algebraic normal forms of coordinate Boolean functions of F are
f1 (X) =X @sz_g,
f(x) = 0 @ x1x Dxpx3x, DL,
f3(x) = x3 D xs O x1 Dxyxs,
falx) =x, D1,
where x € ;. Then
Ky, .4=Ci, 4DF(p1,....ps) = Cy, 4D (0100) = (1101),
Ks,..s = Cs, s @F(ps,....ps) = Cs,..s D (0010) = (1000),
Ko 12 =Co, 12@ F(po, ..., p12) = Co,... 12D (0000) = (1001),
Kis, .16 = Ci3,..,16 D F(p13, --s P16) = Cis,.,16 D (0111) = (0101),

ey

and finally, the key is the following:
K =(1101100010010101).

Many participants coped with this problem and correctly found the key.
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Figure 2. Workspace.

Problem “Stickers”

Formulation

Bob always takes into account all the recommendations of security
experts. He switched from short passwords to long passphrases and
changes them every month. Bob usually chooses passphrases from the
books he is reading. Passphrases are so lengthy and are changed so
often! In order to not forget them, Bob decided to use stickers with
hints. He places them on his monitors (ooh, experts...). The only hope
is that Bob’s hint system is reliable because it uses encryption. But is
that true? Could you recover Bob’s current passphrase from the photo
of his workspace (Figure 2)?

Solution
Looking at the picture we see three stickers. One of them is “A Discourse
of Fire and Salt” that represents a title of a book written by Blaise de
Vigenere. This is the first hint that probably the Viginere cipher was used.
Then we have a sticker with the ciphertext AJKTUWLWLZYABQYRSLS that
consists of 19 letters. And finally, we see the sticker with five directed
polygonal paths containing a total of 19 vertices. These 19 vertices could
correspond to the 19 ciphertext letters.

There is a keyboard at the picture. So, we can guess that these arrows
could be related to the letters from the keyboard. Let us look at the
first two keyboard rows (Figure 3). We can recover the secret key
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Figure 3. Keyboard rows.

ESWAQRDFTGYHIJUKOLP. By deciphering the ciphertext using this key
and the Vigineére cipher, we get WROTEFIRSTATTHEHEAD. Thus, Bob’s
current passphrase is “Wrote first at the head.”

Surprisingly, nobody solved this problem in the first round, while five
teams solved it in the second round.

Problem “Bash-S3”

Formulation
The sponge function Bash-£f (Agievich et al. 2016) uses the permutation S3
that transforms a triple of 64-bit binary words a, b, ¢ in the following way:

S3(a,b,c) = (bv = cDa,avcDb,anbDe).

Here —, A, v, © denote the binary bitwise operations “NOT,” “AND,”
“OR,” “XOR,” respectively. The operations are listed in descending order of
priority. Let w* also denote the cyclic shift of a 64-bit word w to the left by
k€ {1,2,...,63} positions.

Alice wants to strengthen S3. She can do this by XORing any input g, b,
c or its cyclic shift to any output. She must use at least one cyclic shift and
she cannot add two identical terms to the same output.

Help Alice change S3 in such a way that a modified S3 will still be a
permutation!

Remarks.

1. For example, in the expression bv —c@a, we firstly calculate —¢,
then calculate bv —¢, and after that the final result (according to
descending order of operations priority).

2. The modification

(bv = c®a®aavcPa Dc,anb®b?)

is allowed but it does not satisfy the permutation condition.
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3. S3 has three outputs: bv - c@a,avcDb,anb®c. Alice can add as
many inputs and cyclic shifts of inputs as she wants to each of these
outputs. In the remark 2 she adds a'' to the first output, b®@a’ D¢ to
the second output, and ¢® b** to the third output. Note that the fact
that $3 is a permutation (as a function {0,1}**® — {0,1}°**) is not
obvious. But the problem is only to prove that the modification of S3 is
a permutation too (as a function {0,1}°*° — {0,11%*?),

Solution
It is allowed to add to the outputs of S3 the outputs of the following linear
transformation:

L(a,b,c) = (Lo(a,b,c),Li(a,b,c),Ly(a, b,c))

that is defined by bitwise XOR operations and cyclic shifts.
The permutation property of a modified S3 will be broken if for some
distinct (a, b, ¢) and (d, b, (')

S3(a, b,c) ®S3(d, b, ') = L(a,b,c)DL(d,V, ). (1)
We will call the expressions from both sides of equality (1) and the sum
(a,b,c)® (d, V', ) by differences. Let
(wo, w1, wa) = (a,b,¢) D (d, V', '),
(Wo, Wi, W,) = S3(a,b,c) ®S3(a, V', ).

On the one hand, input and output differences of S3 satisfy (for instance,
see Agievich et al. 2016) the equality

Wo/\Wg@Wl/\Wl@Wz/\Wz =11...1.

On the other hand, by (1) the permutation property of a modified S3 will
be broken if

(Wo, Wi, Wy) = L(a,b,c) D L(d', U, ') = L(wo, w1, wy).
As a result, a modified S3 will be still a permutation if the following equal-
ity
wo A Lo(wo, wi, wp) @ wy A Ly (wo, wi, wa) D wy A Ly(wg, wi, wa) = 11...1 (2)
does not hold for any nonzero (wy, w;, w,). For example, if
L(a,b,c) = (aPa’®b,a®c,b), de{1,2,..,63},
then (2) becomes

WO/\(wo@wg@wl)@WIA(WO@WZ)@WZA(Wl) = woA(WO@wg) #11...1.
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Thus, we found the following solution for the problem:
S3(a,b,c)®L(a,b,c) = (bv ~cPBa’Pb,avcPa®bBc,anb®bPc).

Note that there are many other possible solutions.

This problem was completely solved by three participants in the first
round and by nine teams in the second round. Many of these solutions
were interesting and compact.

Problem “Metrical cryptosystem—2”

Formulation
Let [} be an n-dimensional vector space over the field F, = {0,1}. Alice
and Bob exchange messages using the following cryptosystem.

1. First, they use a supercomputer to calculate two special large secret sets
A, B C F} which have the following property: there exists a constant ¢
(¢ > 26), such that for any x € F} it holds

d(x,A) +d(x,B) = ¢,

where d(x, A) denotes Hamming distance from the vector x to the
set A.

2. Alice then saves the number ¢/, the set A and a set of vectors
a, az, ..., a, such that for any k: 0 < k </, there is a vector g; at dis-
tance k from A. Similarly, Bob saves the number /, the set B and a set
of vectors by, by, ..., b, such that for any k : 0 < k </, there is a vector
b; at distance k from B.

3. Text messages are encrypted letter by letter. In order to encrypt a letter
Alice replaces it with its number in the alphabet, say k. Then she choo-
ses some vector g; at distance k from the set A and sends this vector
over to Bob. Bob then calculates the distance d(a;, B) and using the
property of the sets A, B, calculates k = /—d(a;, B). So, he gets the letter
Alice sent. If Bob wants to send an encrypted message to Alice, he does
the same but using his saved vectors and the set B.

Eve was able to hack the supercomputer when it was calculating the sets A
and B. She extracted the set C from its memory, which consists of all vec-
tors of I} that are at distance 1 or less from either A or B. She also learned
that / is even.

Help Eve to crack the presented cryptosystem (to decrypt any short
intercepted message)! You know that she has (illegal) access to the super-
computer, which can calculate and output the list of distances from all vec-
tors of I} to any input set D in reasonable (but not negligible) time.
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Remarks. Recall several definitions and notions. The Hamming distance
d(x, y) between vectors x and y is the number of coordinates in which
these vectors differ. Distance from vector y € F; to the set X CF} is
defined as d(y, X) = minyexd(y, x).

Solution
Let us denote by A; (B; respectively) the set of all vectors at distance i from
the set A (B respectively):

Ai={xeF,:d(x,A) =i},B; = {x € F) : d(x,B) = i}.

It is easy to see that

A=A, =B,

B =By = Ay,

A; =By_; for any i € {0, ..., ¢},
C = A, UB, UA, U B.

From the definition of the Hamming distance it is easy to prove that if a vec-
tor x lies in the set A; then it is at distance |i—j| from the set A; for any i, j.

Proof . Indeed, if i =}, the statement is trivial.

Assume that i > j. By definition, d(x, A) = i, so there exists a shortest path
of length i from A to x, consisting of vectors xy, x1, ..., x; = x, where xy € A.
Since consecutive vectors in the path differ in only one coordinate, and vec-
tors from A, and A, can be neighbors only if [s—t| < 1, it follows that x;, € Ay
for every k = 0, ...,i. So, vector x; from the path belongs to A; and is at dis-
tance i — j from vector x. Therefore, d(x, A;) < i—j. Distance cannot be less
than i — j, because then d(x, A) would have been less than i, which contradicts
conditions of the statement. Thus, d(x, A;) = i—j.

If i <j, then we can replace A; with B,_;, A; with B,_; and use B instead
of A for the same argument as in the previous case. 0

In particular, given x is in A;, it is at distance |i—1| from the set A; and
at distance |i—(¢—1)| from the set B;.

Let us “feed” the set C to the supercomputer. We denote the maximal
distance from vectors of F} to vectors of C as r, and the set of all vectors

achieving this distance as C. Taking into account the statement proven
above (and the fact that ¢ is even), we can see that the maximum is
achieved for vectors of the set A;. Hence, r = £—1 and C= Ay Thus, we
can calculate ¢ as 2r + 2.

Assume now that Alice sends a message a;,,aj,,...,a;, to Bob. Eve inter-
cepts it and (using the obtained table of distances from the set C) calculates
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that these vectors are at distances si,s),...,Sr from the set C. Therefore,
they are at distances s; + 1,5, +1,...,s5t +1 from the set AUB. Since
d(x,AUB) = min(d(x,A),d(x,B)), each encrypted letter could be either
si+ 1 or {—(s; + 1). If one of these two numbers is greater than 26, we can
easily determine the encrypted letter, if not, we can consider both possibil-
ities. In the worst case we would need to consider 2V variants, where N is
the length of the message, but since messages are short and are written in
natural language, we do not need to check all of them and the decryption
should not be hard.

Note: Sets A and B satisfying condition from Step 1 of the problem (for
an arbitrary constant ¢ not necessarily greater than 26) are called strongly
metrically regular and are studied in Oblaukhov (2019).

The best solutions to the problem were submitted by Alexey Chilikov
(Bauman Moscow State Technical University, Russia) and Saveliy
Skresanov (Novosibirsk State University, Russia).

Problem “A fixed element”

Formulation
A polynomial f(Xj,...,X,) € F,[Xj, ..., X,] is called reduced if the degree of
each X; in fis at most 1. For 0 < r < n, the rth order Reed—Muller code of
length 2", denoted by R(r, n), is the F,-space of all reduced polynomials in
X1, ..., X, of total degree less than or equal to r. We also define R(—1,n) = {0}.

The general linear group GL(n,IF,) acts on R(r, n) naturally: Given A €
GL(n,F;,) and f(Xi,....X,) € R(r,n), Af is defined to be the reduced poly-
nomial obtained from f((X, ..., X,)A) by replacing each power X* (k > 2)
with  X;.  Consequently, GL(n,F,) acts on the quotient
space R(r,n)/R(r—1,n).

Let A € GL(n,F,) be such that its characteristic polynomial is a primitive
irreducible polynomial over IF,. Prove that the only element in
R(r,n)/R(r—1,n), where 0 < r < n, fixed by the action of A is 0.

Solution

Let <{1’ r,n}) denote the set of r-subsets of {1,...,n}. When A acts on

R(r,n)/R(r—1,n), its matrix with respect to the basis [[..;X;,I€

iel
<{1’ ..r.,n}>’ is the rth compound matrix C,(A) of A. The eigenvalues of

A are yzi, 0<i<mn—1, where y is a primitive element of F,.. The
eigenvalues of C,(A) are all possible products of r eigenvalues of 4, i.e.,
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Clearly, the above expression never equals 1. Hence 1 is not an eigenvalue
of C,(A). Therefore, the action of A does not fix any nonzero element
in R(r,n)/(r—1,n).

The problem was solved by four teams in the second round: Aleksei
Udovenko (University of Luxembourg), the team of Dianthe Bose and
Neha Rino (Chennai Mathematical Institute, India), the team of Andrey
Kalachev, Danil Cherepanov and Alexey Radaev (Bauman Moscow State
Technical University, Russia), and the team of Sergey Titov and Kristina
Geut (Ural State University of Railway Transport, Russia).

Problem “Hash function FNV-1a”

Formulation

Hash function FNV-la (http://www.isthe.com/chongo/tech/comp/fnv/)
processes a message x composed of bytes x,x,...,x, € {0,1,...,255} in the
following way:

1. h <« hg;
2. fori=1,2,...,n: h« (h@x;)g mod 2'%;
3. return h.

Here hy = 144066263297769815596495629667062367629, g = 2% + 315.
The expression h® x; means that the least significant byte of h is added
bitwise modulo 2 with the byte x;.

Find a collision, that is, two different messages x and x' such that
FNV—1la(x) = FNV—la(x’). Collisions on short messages and collisions
that are obtained without intensive calculations are welcomed. Supply your
answer as a pair of two hexadecimal strings which encode bytes of colliding
messages.

Solution
We will base the solution to the problem on “FNV2” (NSUCRYPTO2017)
(Gorodilova et al. 2019), where it was required to find a collision for the
similar hash function FNV2. FNV-1a differs from FNV2 in the following:
instead of the @ operation for adding 4 and x; it uses standard 4 operation.

It is easy to see that

FNV2(x1%5...%,) = (hog"+x18"+x2¢" " + ... +x,g) mod 2'%%,
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For FNV2, we found a relation
ag" 't ag"*+ - +a, =0 (mod2'®),

where a; € {—255, ...,255}.
Then we represented a; as the difference x;—x} and found a collision

FNV2(X1%)...X,) —FNV2 (¥ ;..x, )= a1g"+axg" ' + ..4+a,g =0 (mod 2'**).

Let us call a representation a; = x;—x’ as a splitting of a;. There can be
several splittings for a given a;. Each of them induces two trajectories of
intermediate values of h: the trajectory starting with a message x;x;...x,
and the trajectory starting with a message xx}...x/,.

Let h; and h! be the low bytes of h for the first and second trajectories, respect-
ively before the additions & + x; and h + x]. Let us call a splitting suitable if

hi +x; <256, h.+x. <256, i=1,2,..,n.

Let us evaluate the probability of existing a suitable splitting for a;, We
will assume that h;, K] are realizations of independent random variables
with uniform distribution over {0, 1,...,255}.

Bytes x; and x. can take any value from intervals {0,...,255—h;} and
{0, ...,255—h}, respectively. At the same time, the difference x;—x] takes value
from the interval {—255 + H}, ..., 255—h;}.

Then a; is in the interval {—255+ ki, ...,255—h;} with the probability

Pr(h; < 255—a;), a; >0,

Pr(—255+ h, < a; < 255—h;) =
( S ) {Pr(h:.§255—\ai ), a; <0,

that is equal to 1—|a;|/256.
Thus, the probability that a suitable splitting exists for the whole
sequence a,d,...a, is the following:

- |a,-|>
=TT(1- .
P15
This probability can be rather high. For example, p ~ 1/25 for the follow-
ing sequence for n=18:

(—64,5,73,35,—53,19, —10, —78, —44, 48,61, —1, —80, 26, —22,72, —31,0).

Or, p ~ 1/13 for the following sequence for n = 19:
(—37,34,—74,—4,—17,33,—18,21,54,33,—1,58,—71,—13, 10, 11, —88, —19,0).

Moreover, the probability can be increased if we change a strategy of
finding suitable splittings. We can allow to modify splittings aj, ..., a;_; that
have been already built if it is impossible to find a splitting for a;.
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Table 4. Collisions of FNV-1a.

Message 1 Message 2
f1dd5921afd29cbd33b357184e8c 928ea41b7373792aae2bfa72ca64
eb18151b160aa95e0511357e158b58 ab775b3a7c7c7c7c7c7c3a5dc94e
f828e4070672220b195e0ddd2114a4c008 3638fa655d1b61e21419134803222bbb35
3a7a3a7a3ad4aba5a5a5a5a5a5a5a5a5a5aba 51089c5e7fe7cc2d740b5f70b3cb5461824d
f4331cede51639057d05f80f1d6638b40b286f €b270505187332116¢611402081f1155326013
07160c2e0b700b1338ef6e63360419060507 10610bf23b0573€2317106176a171c6adcbe
00ca0000cb000000000000000029092100d814 2d000158001b773a6364fc0905000000e90000

After finding a suitable splitting, we determine the sequences (h;), (h}).

Then we determine the bytes x;,%; such that
h,‘@%i:hi—}—xi, h;Echﬁ:hH—x:, i:1,2,...,l’l.

It is important that there are no carries in high bytes in additions
hi + x;, K.+ x}; and X;, X, can be always found. Then a collision for FNV-1a
is a pair of messages X%;...X, and X|X,...x] .

It remains to say that the sequence (a;) can be found using LLL algo-
rithm. The algorithm is applied to the lattice defined by the basic vectors

b, = (1,0,...,0,¢" ! mod 2'%),
b, = (0,1,...,0,¢" % mod 2'%),

b, = (0,0, ..., l,go mod 2128),
b1 = (0,0,...,0,2'%),

where ¢ is a small integer. LLL finds a short basis of the lattice, i.e., vectors

with small coordinate values. Let the last coordinate v equal to 0. Then

n+1

Za,-g"”' =0 (mod2"®),
i1

ie., (ai,...,a,) is a required solution.

This problem was completely solved by fourteen teams (the most of
them used a reduction to the problem FNV2). Some examples of collisions
proposed by participants (in HEX format) are given in Table 4.

Problem “TwinPeaks2”

Formulation
Bob realized that his cipher from last year, TwinPeaks (NSUCRYPTO’2017)
(Gorodilova et al. 2019), is not secure enough and modified it. He considerably
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increased the number of rounds and made rounds more complicated. Bob’s
new cipher works as follows.

A message X is represented as a binary word of length 128. It is divided
into four 32-bit words a,b,c¢,d and then the following round transform-
ation is applied 48 times:

(a,b,¢,d) — (b,c,d,a® S3($1(b) B S2(bA = cDevd) DS (d))),

Here S, S,,S; are secret permutations over 32-bit words; —, A, v, & are
binary bitwise “NOT”, “OR”, “AND”, “XOR?”, respectively (the operations
are listed in descending order of priority). The concatenation of the final
a,b,c,d is the resulting ciphertext Y for the message X.

Agent Cooper again wants to read Bob’s messages! He intercepted the
ciphertext

Y = DEB239852F1B47B005FB390120314478

and also captured Bob’s smartphone with the TwinPeaks2 implementa-
tion! Here it is (https://nsucrypto.nsu.ru/olymp/2018/round/2/task/4). Now
Cooper (and you too) can encrypt any messages with TwinPeaks2 but still
can not decrypt any. Help Cooper to decrypt Y.

Remarks. The ciphertext is given in hexadecimal notation, the first byte is DE.

Solution
Let F be the round transformation of TwinPeaks?2:

F(a,b,c,d) = (b,c,d,a®f(b,c,d)).

The encryption transformation is the composition of 48 copies of F, i.e., it
can be written as F**. Consequently, F~* is the decryption transformation.
Let

t(a,b,c,d) = (d,c,b,a).
Let us note that f(b,¢c,d) = f(d,c,b). Then the composition of F, T and F
gives us T:

FotoF(ab,cd) =Fa®f(b,cd),dc,b)=Fa®f(dcb)dcb)=(dchba).

Hence,
F¥F% = ¢
or
F* = tF%c! = F¥¢.

Thus, in order to decrypt Y one should write its 32-bit blocks in reverse

order, encrypt the result and then reverse the order of the blocks again.

The result will be a hexadecimal word, which gives us the desired message
attacksgetbetter.
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Figure 4. A simplified Enigma.

The best solution to the problem has been submitted by Carl Londahl
(Sweden), which not only provides a clean theoretical solution, but also
proposes a slide attack on the cipher.

Problem “An Enigmatic challenge”

Formulation
The Enigma machine is a symmetric cipher famous for being used during
the Second World War by the German military. Its internal structure com-
prises a 26-letter Latin alphabetic permutation, implemented as rotors. The
machine used for this problem consists of three rotors and a reflector.
Figure 4 shows how a simplified Enigma machine works. The key com-
ponents are the set of input switches (2)—which are reduced to 4 in the
example but could have been 26 for the Latin alphabet—an input plug-
board (3, 7, 8), three rotors (5), the reflector (6), and the output board (9).
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The components have the following functionality:

e Rotors: a rotor (5) is a wheel with the upper-case alphabet in order
on the rim and a hole for an axle. On both sides of a rotor are 26 elec-
trical contacts each under a letter. Each contact on one side is wired
to a contact on the other side at a different position. The rotor imple-
ments a one-to-one and onto function between the upper-case letters,
where each letter is mapped to a different one (an irreflexive
permutation).

e Reflector: the reflector (6) is positioned after the rotors and has con-
tacts for each letter of the alphabet on one side only. The letters are
wired up in pairs, so that an input current on a letter is reflected back
to a different letter.

The input message: is permuted by the rotors, passes through the
reflector, and then goes back through the rotors in the reverse order (as
depicted in the figure). Finally, the light bulb indicates the encrypted letter.
The plugboard plays no role in permuting the letter for this challenge,
although it could have.

To prevent simple frequency analysis attack the right rotor rotates with
every new input. After the right rotor completed a full rotation (after 26
letters were encrypted), the middle rotor rotates once. Similarly, after the
middle rotor completes a full rotation (and the right rotor complete 676
rotations), the left rotor rotates once.'

Challenge: you will play the role of an attacker that knows the source
of the plaintext to be encrypted. You are given a ciphertext correspond-
ing to a plaintext taken from this known source which happens to be
“Moby Dick” by Herman Melville, and you are asked to recover the
plaintext. The plaintext consists only of trimmed capital letters with no
punctuation marks and spaces and is contiguous. All letters are from
the Latin alphabet. Extra information on the settings of the rotors is
provided: the configuration of the first rotor is very close to the
one used in the 1930 commercial version (that was
EKMFLGDQVZNTOWYHXUSPATIBRCJ).

“This means that an input letter is processed, in order, by three permutation—right, middle, and left—reflected
by the reflector, and processed once again, in order, by the inverse permutations corresponding to left,
middle and right rotors before being output. Once the letter passes through a rotor, it is permuted with one
position, the rotor's permutation is applied, and the result goes directly into the following rotor, which
acts similarly.
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Ciphertext:

RHSM ZHXX AOWW ZTWQ QOMB CRZA BARN MLAV MLSX SPBA ZTHG
YLGE VGZG KULJ FLOZ ROAW YGAA DCJB YWBW IYQQ FAAO RAGK
BGSW OARG EYSP IKYE LLUO YCNH HDBV AFKD HETA ONNR HXHE
BBRT ROZD XJcc OMXR PNSW UAZB TNJY BANH FGCS GIWY YTBV
VGLX KUzw PARO NMXP LDLZ ICBK XVSJ NXCF SOTA AQYS YZFX
MZDH MSZI ABAH RFXT FTPU VwMC PEXQ NZVA LMFX BHKG QGYS
BIYE MEUE PJINR AVTL Jsuz PLHQ MOUI IQFD HVXI NOOJ YJAF
WAVU PVOA FMKP AHLK XJYD GITB QSPK CUzZU XPRK MUJJ YRJ

Link to “MobyDick” text file can be found in https://gist.githubusercon-
tent.com/StevenClontz/4445774/raw/1722a289b665d940495645a5eaaad4-
da8e3ad4c7/mobydick.txt.

Solution

It is easy to observe that the left and middle rotors will not change for
each block of 26 characters of the plaintext. From this point of view, we
can regard the composition of permutations induced (in order) by the mid-
dle and left rotors, the reflector and as well as the inverses of the left and
middle rotors, as one, fixed permutation. After the next 26 letters are proc-
essed, the middle rotor turns, and a distinct permutation is to be used for
the incoming block of 26 letters. Due to the fact the challenge ciphertext is
less than 676 characters, we do not bother with turning the left rotor.

To fix some notations, let n;, L;, M; denote permutations defined on the
set {A, ..., 2} If L:{A, .., 2} —{A, ..., 2} denotes the permutation
defining the left rotor, by L;: {A, ..., 2} — {A, ..., 2} and L; = L o Rot;,
we represent the action of applying the left rotor over the alphabet, where
Rot; represents the alphabet’s rotation by i. We use a similar notation for

M;, with i denoting each block of 26 letters to be processed. That is i €

{1, .., %}}, where |C| denotes the length of the ciphertext (its number of

characters). We also write

I . ICl
ni=M; oLy opoLyoM; i€ql,.., % .

The next step is to split the challenge ciphertext into blocks of 26 charac-
ters, and use the fact that for each block i, m; acts as an oracle that returns
the same value for the same input. We will correlate this with the informa-
tion that is a priori given on the first rotor. Although we do not have its
exact configuration, we use the fact that the unknown rotor is close to a
known one (EKMFLGDQVZNTOWYHXUSPAIBRCJ—commercial Enigma
1930). The configuration used for this problem permutes four elements
amongst the ones of the 1930 configuration and then applies a circular
permutation of length four.
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The permutation corresponding to the given right rotor of the commer-
cial Enigma (1930) is the following:

A B CDEFGH I J KL MNUOP QRSTUVWXYZ
E K MFLGDQV ZNTUOMWYHX USUPAI B R CJ

Then we take the first block of 26 letters and obtain their inverses, mind-
ing the fact that the rotor shifts with one place to the left after we read one
letter. Hence, for the first block we obtain:

RHSM  ZHXX AOWW  ZTWQ QQMB CRZA BA
UVAH FOFL  VRDQ TDNG DQLA BOR JJ

Now we remark on a “distance-preserving” property: if the distance
between identical characters returned by =; (the input to the Right rotors)
is ¢, then it maintained in the original plaintext. As an example, the group
ZHXX in the first block of ciphertext has been obtained for the group
FOFL and we note a distance of 2 (F — O — F) between F and F. This
means that an alphabetical distance of 2 exists between the corresponding
letters of the plaintext. More precisely, if:

m(R(x)) = m(R'(7)),
where R’ is obtained by shifting R with ¢ elements, then the character y is
at a distance of ¢ from the character x (but in the opposite sense). Based
on this observation, the solution is to identify such pairs inside a block and
record the distance between them. As four elements are permuted in the
real configuration of the rotor, false positives will appear.

After the colliding characters per block, say in position i and j, have
been identified and their distance recorded, say the distance is ¢, one will
simply write a script that will pass through the given plaintext (after
removing the non-alphabetic characters) and identify the sequence (match-
ing the length of the ciphertext) where the distance between the characters
in position i and j is /.

Finally, the plaintext that is to be recovered is:

ALREADY we are boldly launched upon the deep; but soon we shall be lost in its
unshored, harbourless immensities. Ere that come to pass; ere the Pequod’a weedy
hull rolls side by side with the barnacled hulls of the leviathan; at the outset it is but
well to attend to a matter almost indispensable to a thorough appreciative
understanding of the more special leviathanic revelations and allusions of all sorts
which are to follow.

Finally, eight teams completely solved the problem. Note, that many
teams used a simple method that almost completely determined the plain-
text. It is based on the fact that no letter from the plaintext gets mapped to
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the same letter in the ciphertext using Enigma. But this approach gives two
possible solutions and does not allow one to prove that one of them is
not correct.

Problem “Orthogonal arrays” (unsolved)

Formulation

Orthogonal arrays are closely connected with cryptographic Boolean func-
tions. Namely, supports of correlation immune functions give orthogonal
arrays when their elements are written as the rows of an array.

Given three positive integers n, t, and A such that t <n, we call a 22" x n
binary array (i.e., matrix over the two-element field) a t—(2,n,1) orthog-
onal array if in every subset of ¢ columns of the array, every (binary) t-
tuple appears in exactly A rows. t is called the strength of this orthog-
onal array.

Find a 4—(2,11, 1) orthogonal array with minimal value of 1.

Solution
The best known answer to this question is A=8 (Picek et al. 2015), but it
is unknown whether there exists a 4—(2,11, 1) orthogonal array for 4 < 8.
This open problem remains unsolved. Participants suggested several ideas.
The most interesting one was proposed by Aleksei Udovenko (University
of Luxembourg). His study starts with the Nordstrom—Robinson code
(that is, the Kerdock code of length 16 and size 256, whose dual distance is
the minimum distance of the Preparata code, that is 6, which gives a
strength of the orthogonal array (OA) equal to 5). Only the codewords
with the first element equal to zero are kept and their coordinate at 0 is
deleted, which makes size 128, length 15 and strength 4. Then three col-
umns are erased from the OA, which does not reduce the strength, and the
resulting OA provides a solution to the problem with A=8. It is then
shown (by using known results) that, for any solution to the problem, 4 is
at least 6. This is interesting. The solution found is written in the form
(x,F(x)) where F is a quadratic (7, 4)-function. Its determination allows
one to determine the 4-th order correlation immune function whose sup-
port is this OA. This is an 11-variable Boolean function of algebraic degree
5. Then the annihilators of this function are studied. It is shown that the
function has a linear annihilator (and has then algebraic immunity 1).
After an observation on the impossibility of extending a solution which
would have 4 <7, the Xiao—Massey characterization of OA is proved
again in different terms. It is also shown that any affine annihilator of a ¢-
th order correlation immune function must be t-resilient which is a nice
observation. A computer search is made with Integer Linear Programing
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showing that any 4-th order correlation immune function having an affine
annihilator should have weight at least 128, which is a nice observation.
This nice work concludes with open questions.

Another good solution was given by the team of Evgeniya Ishchukova,
Vyacheslav Salmanov, and Oksana Shamilyan (Southern Federal University,
Russia). They first studied the maximum value of n, given f, for small val-
ues of t. Then an algorithm was designed which reduces the search to solu-
tions having some symmetries observed in smaller values of ¢t and n.
Finally, a solution was given with 4 =8 which is the coset of a linear code
of length n=11 and dimension k=7 (and therefore 128 codewords), with
dual distance 5, and the corresponding function is then indeed 4th order
correlation immune giving a 4—(2,11,4) orthogonal array. Unfortunately,
the question whether 128 is minimal was not addressed.

Problem “Sylvester matrices” (unsolved)

Formulation

Sylvester matrices play a role in security since they are connected with
topics like secret sharing and MDS codes constructed with cellu-
lar automata.

Consider two univariate polynomials over the two-element field, P;(x) of
degree m and P,(x) of degree n, where Pj(x) =a,x"+---+ay and
Py(x) =byx" +---+by. The Sylvester matrix is an (m+n) x (m+ n)
matrix formed by filling the matrix beginning with the upper left corner
with the coefficients of P;(x), then shifting down one row and one column
to the right and filling in the coefficients starting there until they hit the
right side. The process is then repeated for the coefficients of P,(x). All the
other positions are filled with zero.

Let n>0, m > 0. Prove whether there exist (m + n) x (m + n) invertible
Sylvester matrices whose inverses are Sylvester matrices as well.

Example. For m =4 and n = 3, the Sylvester matrix is the following:
ag az a; a; a 0 O
a, a3 a a1 ag O
0 a4 a3 a, a1 ao
bs; b, by by 0
by by b1 b
bs b, by by
0 by by by b
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Solution

We are pleased to say that three teams completely solved this problem!
They are Alexey Chilikov (Bauman Moscow State Technical University,
Russia), the team of Radu Caragea, Madalina Bolboceanu and Miruna
Rosca (Bitdefender, Romania), and the team of Samuel Tang and Harry
Lee (Hong Kong). Here we present the main idea for the solution.

Case 1: m <n. Let P;(x) =x" and P,(x) =x" 4+ 1. Then their Sylvester
matrix is the following:

< I, 01 m >
Im| Omx(nfm) Ly ’

where I; denotes the k x k identity matrix; and Ok, is the k x ¢ zero
matrix. Taking all operations over the two-element field, it is clear that

In |0n><m IVL |0n><m Ii’l Onxm
( )- (51 )~ = Ly
L, | Omx(n—m) | L, L, Omx(n—m) L Omxn Ln

Thus, the considered Sylvester matrix is an involutory matrix. Therefore,
its inverse is the Sylvester matrix as well.

Case 2: m >n. Assume that the inverse of the Sylvester matrix of P;(x)
and P,(x) is also the Sylvester matrix for two polynomials over the two-
element field, say Qi(x) = cpX + o1+ -+ o, Qu(x) = dgx +
dg1x171 + - +dy, of degrees p>0 and g >0, respectively, which satisfy
p+q=m+n. The product of Sylvester matrices which correspond to
P (x), P,(x) and Qi (x), Qz(x) is equal to I,,;,, in particular

Am  Am—1 aop Cp
m  Am-1 ...  do 0
I
A ao 0 0 mn
=| .| eF™
b, b, bp 0 0 d, :
bn bn—l bo 0 0
b, b, ... by 0

The condition g >n implies b,c, = 0, but b, = ¢, = 1 since the polyno-
mials P;(x) and Q(x) have degrees n and p, respectively. Therefore, it
must hold g < n. Since Q,(x) has degree g, then d; = 1 and (1 +b,_,) =
by —gi1 = bugi2 = ... = by_gimin{gm—1y = 0. From b, = 1 it follows that
min{q, m—1} < g, that is m < q. Finally, we get m < q <n < m that is a
contradiction.
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Thus, in the case m < n there exist invertible Sylvester matrices whose
inverse are Sylvester matrices as well but for m > n it does not hold.

Problem “Disjunct matrices” (unsolved)

Formulation
Disjunct matrices are used in some key distribution protocols for traitor
tracing. Disjunct matrices (DM) are a particular kind of binary matrices
which have been applied to solve the non-adaptive group testing (NAGT)
problem, where the task is to detect any configuration of ¢ defectives out
of a population of N items. Traditionally, the methods used to construct
DM leverage on error-correcting codes and other related alge-
braic techniques.

Let A = (xlT,sz, ...,x]T,) be an M x N binary matrix. Then, A is called t-
disjunct if, for all subsets of t columns S = {x;,,...,x; }, and for all remain-
ing columns x; ¢ S, it holds that

t
supp(x;) £ U supp(x;,);

where supp(x) denotes the set of coordinate positions of a binary vector x
with 1s.

In other words, a matrix A is ¢-disjunct if for every subset S of ¢ columns
the support of any other column is not contained in the union of the sup-
ports of the columns in S.

Prove what is the minimum number of rows in a 5-disjunct matrix.

Solution

We must admit that the formulation of the problem did not include the
condition which makes this problem non-trivial. The condition is that
the number of columns must be greater than the number of rows. This
formulation comprises practical significance and has the following
equivalent form: given t, when does there exist a t-disjunct algorithm
better than the trivial one that tests each item individually? Readers may
find details regarding non-adaptive group testing (NAGT) problem
together with known results and mentioned formulations in Shangguan
and Ge (2016).

The solution of the originally stated problem is 6—consider the 6 x 6
identity matrix. This solution was discovered by several participants.
However some participants (Alexey Chilikov from Bauman Moscow State
Technical University, Aleksei Udovenko from University of Luxembourg,
and the team of Henning Seidler and Katja Stumpp from Technical
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University of Berlin) obtained bounds for the number of rows depending
the parameter t and the number of columns.

Winners of the Olympiad

Figure 5 shows NSUCRYPTO winners from 2014 to 2018. Here we list
information about the winners of NSUCRYPTO2018 in Tables 5-10.

CRYPTOLOGIA

Figure 5. Winners of NSUCRYPTO from 2014 to 2018.

Table 5. Winners of the first round in school section A (“school student”).

Place Name Country, City School Scores

1 Borislav Kirilov Bulgaria, Sofia The First Private Mathematical 22
Gymnasium

1 Alexey Lvov Russia, Novosibirsk Gymnasium 6 21

1 Razvan Andrei Draghici Romania, Craiova National College Fratii Buzesti 20

2 Gorazd Dimitrov Macedonia, Skopje Yahya Kemal College 18

3 Ivan Baksheev Russia, Novosibirsk Gymnasium 6 16

3 Artem Ismagilov Russia, Yekaterinburg The Specialized Educational 16
and Scientific Center UrFU

3 Bogdan Circeanu Romania, Craiova National College Fratii Buzesti 16

3 Ruxandra Icleanu Romania, Craiova Tudor Vianu National College 15
of Computer Science

Diploma Sofya Gorbunova Russia, Yekaterinburg The Specialized Educational 13
and Scientific Center UrFU

Diploma Kirill Poltoradnev Russia, Yekaterinburg The Specialized Educational 13
and Scientific Center UrFU

Diploma Tudor Moga Romania, Brasov Grigore Moisil National College 1
of Computer Science

Diploma Markas Cerniauskas Lithuania, Kaunas Kaunas Technology University 1
Gymnasium

Diploma Mircea-Costin Preoteasa Romania, Bucharest Tudor Vianu National College 1
of Computer Science

Diploma Kirill Tugolukov Russia, Ulan-Ude School 19, Olympiad training 1

center ENTER
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Table 6. Winners of the first round, section B (in the category “university student”).

A. GORODILOVA ET AL.

Place Name Country, City University Scores
1 Maxim Plushkin Russia, Moscow Lomonosov Moscow State University 25
2 Robert Koprinkov Netherlands, Nijmegen Radboud University 20
2 Irina Slonkina Russia, Moscow National Research Nuclear 18
University MEPhI
2 Marc Houben Belgium, Leuven KU Leuven 18
3 Dheeraj M Pai India, Chennai Indian Institute of Technology Madras 17
3 Alexander Grebennikov Russia, Saint Petersburg ~ Saint Petersburg State University 16
3 Roman Lebedev Russia, Novosibirsk Novosibirsk State University 16
3 Dianthe Bose India, Chennai Chennai Mathematical Institute 15
3 Ivan Sutormin Russia, Novosibirsk Novosibirsk State University 15
Diploma Harikumar Krishnamurthy India, Chennai Indian Institute of Technology Madras 14
Diploma Roman Tarasov Russia, Odintsovo Higher School of Economics 13
Diploma Sander Suverkropp Netherlands, Wageningen Radboud University 13
Diploma Saeed Odak Iran, Tehran Khajeh Nasir Toosi University 13
of Technology
Diploma Thijs van Loenhout Netherlands, Nijmegen Radboud University 12
Diploma Daniil Gurev Russia, Novosibirsk Novosibirsk State University 12
Diploma Neha Rino India, Chennai Chennai Mathematical Institute 12
Diploma Kristina Volyakova Russia, Yaroslavl Yaroslavl State University 12
Table 7. Winners of the first round, section B (in the category “professional”).
Place Name Country, City Organization Scores
1 Alexey Udovenko Luxembourg, Luxembourg University of Luxembourg 23
3 Henning Seidler Germany, Berlin TU Berlin 16
Diploma Alexey Chilikov Russia, Moscow Bauman Moscow State 14
Technical University
Diploma Samuel Tang Hong Kong, Hong Kong Blocksquare Limited 12
Diploma Amedeo Sgueglia United Kingdom, London London School of Economics 12
and Political Science
Diploma Samad Alaamati Iran, Tehran American Society for 12
Industrial Security
Table 8. Winners of the second round (in the category “school student”).
Place Names Country, City School Scores
Diploma Brian Ncube Zimbabwe, Hwange Hwange High School 7
Table 9. Winners of the second round (in the category “university student”).
Place Name Country, City University Scores
1 Maxim Plushkin Russia, Moscow Lomonosov Moscow 43
State University
2 Irina Slonkina Russia, Moscow National Research Nuclear 38
University MEPhI
2 Dmitry Lavrenov, Egor Belarus, Minsk Belarusian State University 37
Lavrenov,
Uladzimir Paprotski
3 Thanh Nguyen Van, Tuong Vietnam, Ho Chi Ho Chi Minh City University 37
Nguyen Van, Dinh Ton Minh City of Technology, University
of Science
3 Ngoc Ky Nguyen, Phuoc Vietnam, Ho Chi Ho Chi Minh City Pedagogical 34
Nguyen Ho Minh, Danh Minh City; University, Ho Chi Minh
Nam Tran France, Paris City University of
Technology, Ecole
Normale Superieure
(continued)
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Table 9. Continued.

Place Name Country, City University Scores

3 Dianthe Bose, Neha Rino India, Chennai Chennai 33

Mathematical Institute

3 Roman Lebedev, Vladimir Russia, Novosibirsk Novosibirsk State University 30
Sitnov, Alexander Tkachev

3 Mikhail Sorokin, Darya Russia, Moscow National Research Nuclear 29
Frolova, Vladimir Bobrov University MEPhI

3 Andrey Kalachev, Danil Russia, Moscow Bauman Moscow State 27
Cherepanov, Technical University
Alexey Radaev

Diploma Saveliy Skresanov Russia, Novosibirsk Novosibirsk State University 21

Diploma Harikumar Krishnamurthy, India, Chennai Indian Institute of 21
Aditya Pradeep, Dheeraj Technology Madras
M Pai

Table 10. Winners of the second round (in the category “professional”).

Place Names Country, City Organization Scores
1 Alexey Udovenko Luxembourg, University of Luxembourg 72
Luxembourg
2 Evgeniya Ishchukova, Vyacheslav  Russia, Taganrog Southern Federal University 46

Salmanov, Oksana Shamilyan
3 Henning Seidler, Katja Stumpp Germany, Berlin Berlin Technical University 40
3 Carl Londahl Sweden, Karlskrona TrueSec AB 38
3 Alexey Chilikov Russia, Moscow Bauman Moscow State 38
Technical University
Diploma  Duc Tri Nguyen, Quan Doan, Vietnam, Ho Chi CERG at George Mason 37
Quoc Bao Nguyen Minh city University, E-CQURITY, Ho
Chi Minh City University
of Technology
Diploma Radu Caragea, Miruna Rosca, Romania, Bucharest Bitdefender 32
Madalina Bolboceanu
Diploma  Mikhail Polyakov, Mikhail Russia, Moscow Bauman Moscow State 30
Tsvetkov, Victoria Vlasova Technical University
Diploma Harry Lee, Samuel Tang Hong Kong, Hong Kong  Blocksquare Limited, Hong 29
Kong University of Science
and Technology
Diploma Lars Haulin Sweden, Uppsala - 28
Diploma  Sergey Titov, Kristina Geut Russia, Yekaterinburg Ural State University of 22
Railway Transport
Diploma  Khai Hanh Tang, Neng Zeng, Singapore, Singapore Ho Chi Minh City Pedagogical 21

Thu Hien Chu Thi

University, Nanyang
Technological University
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Abstract

A bent function is a Boolean function in even number of variables which is on the maxi-
mal Hamming distance from the set of affine Boolean functions. It is called self-dual if it
coincides with its dual. It is called anti-self-dual if it is equal to the negation of its dual. A
mapping of the set of all Boolean functions in n variables to itself is said to be isometric if it
preserves the Hamming distance. In this paper we study isometric mappings which preserve
self-duality and anti-self-duality of a Boolean bent function. The complete characterization
of these mappings is obtained for n > 4. Based on this result, the set of isometric mappings
which preserve the Rayleigh quotient of the Sylvester Hadamard matrix, is characterized.
The Rayleigh quotient measures the Hamming distance between bent function and its dual,
so as a corollary, all isometric mappings which preserve bentness and the Hamming distance
between bent function and its dual are described.

Keywords Boolean functions - Self-dual bent - Isometric mappings - The group of
automorphisms - The Rayleigh quotient

1 Introduction

The term “bent function” was introduced by Oscar Rothaus in the 1960s [18]. It is
known [21], that at the same time Boolean functions with maximal nonlinearity were also
studied in the Soviet Union. The term minimal function, which is actually a counterpart of
a bent function, was proposed by the Soviet scientists Eliseev and Stepchenkov in 1962.
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Guest Editors: Lilya Budaghyan and Tor Helleseth

The author was supported by the Russian Foundation for Basic Research (projects no. 18-07-01394, 20-
31-70043), the study was supported within the framework of the state contract of the Sobolev Institute
of Mathematics (project no. 0314-2019-0017) and Laboratory of Cryptography JetBrains Research.

>4 Aleksandr Kutsenko
Alexandrkutsenko @bk.ru

I Sobolev Institute of Mathematics, Novosibirsk, Russia

2 Novosibirsk State University, Novosibirsk, Russia

@ Springer

188


http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-020-00438-y&domain=pdf
http://orcid.org/0000-0001-5006-1248
mailto: Alexandrkutsenko@bk.ru

Cryptography and Communications

Bent functions have connections with such combinatorial objects as Hadamard matri-
ces and difference sets. Since bent functions have maximum Hamming distance to linear
structures and affine functions they deserve attention for practical applications in symmet-
ric cryptography, in particular, for block and stream ciphers. We refer to the survey [3] and
monographies of Mesnager [17] and Tokareva [21] for more information concerning known
results and open problems related to bent functions.

For each bent function, its dual bent function is uniquely defined. More information
about properties of dual bent functions one can find in work [3]. A bent function that
coincides with its dual is called self-dual. There are a number of papers devoted to open
problems including characterization and description of the class of self-dual bent functions.

All equivalence classes of self-dual bent functions in 2, 4, and 6 variables and all
quadratic self-dual bent functions in 8 variables with a respect to a restricted form of affine
transformation which preserves self-duality were given in [2]. Further, equivalence classes
of cubic self-dual bent functions in 8 variables with respect to the mentioned above restricted
form of affine transformation one can find in [7]. In [8] a classification of quadratic self-
dual bent functions was obtained. The upper bound for the cardinality of the set of self-dual
bent functions was given in [9]. In [19] Sok et al. discovered a connection between qua-
ternary self-dual bent functions and self-dual bent Boolean functions. New constructions
of self-dual bent functions were presented in [13, 16]. The complete Hamming distance
spectrum between self-dual Maiorana—McFarland bent functions was obtained in [11]. Iter-
ative constructions and metrical properties, in particular, sets of Boolean functions which
are maximally distant from the sets of self-dual and anti-self-dual bent functions and also
the questions concerning metrical regularity of the sets of self-dual and anti-self-dual bent
functions, were studied in [12].

Study of automorphism groups of mathematical objects deserve attention since these
groups are closely connected with the structure of the objects. There exists an essential
generally non-trivial question: how groups of automorphisms of two mathematical objects,
one of which is embedded to another one, are related.

The group of automorphisms of the set of bent functions was completely characterized
by Tokareva in [20]: it was proved that each isometric mapping of the set of Boolean func-
tions in n variables to itself preserving the class of bent functions is a combination of an
affine transformation of coordinates and a shift by an affine function. The said group is a
semidirect product of the affine group GA (n, F») and IFZ'H. A natural question arises how
the automorphism group of the set of self-dual bent functions is connected with the group
of automorphisms of the set of bent functions.

As it was mentioned, in papers [2, 7] the classification of self-dual bent functions based
on the restricted form of affine equivalence preserving self-duality that forms the extended
orthogonal group, was proposed. We study a question whether there exist other isometric
mappings of Boolean functions in #n variables to itself which preserve the class of self-
dual bent function. In this paper, we prove that there are no other mappings satisfying such
a property, thus obtaining a characterization of the group of automorphisms of the set of
self-dual bent functions.

In this paper we study isometric mappings of the set of all Boolean functions inn > 4
variables to itself which preserve self-duality and anti-self-duality of a Boolean function.
The complete characterization of these mappings is obtained. It is proved that every such
mapping has form

J&)— f(Lx®C) D (c,x) Dd,
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where L is an x n orthogonal binary matrix, ¢ € I}, ¢ has even Hamming weight, d € [F>.
Based on this result, the set of isometric mappings which preserve the Rayleigh quotient
of the Sylvester Hadamard matrix of every Boolean function is obtained. As a corollary
all isometric mappings which preserve bentness and the Hamming distance between bent
function and its dual are given.

The work has the following structure: basic definitions and notions concerning iso-
metric mappings and groups of automorphisms are in the Sections 2 and 3. In Section 4
required material on sign functions of (anti-)self-dual bent function, which is directly used
throughout the paper, is given. In Section 5 we characterize isometric mappings preserv-
ing self-duality (Theorem 1) and prove that isometric mapping preserves self-duality if and
only if it preserves anti-self-duality (Proposition 2). In Section 6 isometric mappings which
define bijections between the sets of self-dual and anti-self-dual bent functions (Theorem 2)
are characterized. Section 7 is devoted to the Rayleigh quotient of a Boolean function
and isometric mappings which preserve it (Theorem 3) and change its sign (Theorem 4)
for every Boolean function. In Section 8 we summarize results from this paper (Theo-
rems 6 and 7), the group of automorphisms of (anti-)self-dual bent functions is provided in
Theorem 8. The conclusion is in Section 9.

2 Preliminaries

Let IF; be a set of binary vectors of length .

A Boolean function f in n variables is any map from [ to F>. The set of Boolean
functions in n variables is denoted by F,.

The (0, 1)-sequence defined by (f (vo), f (V1) , ..., f (van_1)) is called the truth table
of f € F, , where

vo = (0,0, ...,0) € F}
vi = (0,0,..,0,1) € F

v =(1,1,..,1) e F,

ordered by lexicographical order.

The sign function F of a Boolean function f € JF, is a real-valued function
F(x) = (=1)/™, x e Fj. Obviously, we have (—1)/® = 1 — 2f(x) for any
x € [F5. We will denote the sign function by F = (—1)/ and refer to it as to a vector

F = ((—l)f("‘)), (=)o (—l)f("2”71)> from the set {£1}%" (it is also known as a
(1, —1)-sequence of the function f € F,, see [4]).

n
The sign @ denotes a sum modulo 2. For x, y € I} denote (x, y) = G}lx,-yi. Boolean
i=
function f € JF, which can be represented in the form f(x) = {a,x) ® ap,x € F},
where a € F3, ag € F», is called affine. Two Boolean functions f, g € F, are said to be
affinely equivalent if g(x) = f(Ax @& b) ® (b, x) & d, where b, c € Fg, d e Fyand A
is a n x n nonsingular binary matrix. If no such transformation exists, then f, g are called
inequivalent.
The Hamming weight wt(x) of the vector x € I} is the number of nonzero coordinates of
x. The Hamming weight wt(f) of the function f € JF, is the Hamming weight of its vector
of values. The Hamming distance dist( f, g) between Boolean functions f, g in n variables
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is a cardinality of the set {x € F}| f(x) ® g(x) = 1}. The Walsh-Hadamard transform
(WHT) of the Boolean function f in n variables is an integer function Wy : F, — Z,
defined as

Wi(y) =Y (=)@ -y e Ty,

xel}
A Boolean function f in an even number n of variables is said to be bent if
(Wr(y)| =2"2,

forall y € I} The set of bent functions in n variables is denoted by B,,. From the definition of
bent function f it follows that there exists such Boolean function f* € F, that forany y € I}
we have

W) = (=17 022,

The Boolean function fdefined above is called the dual function of the bent function f.
The duality of bent functions was introduced by Dillon [6].
Some known properties of dual functions [1]:

—  Every dual function is~ a bent function; _

- If fis dual to f andfis dual to f then f: f;

— The mapping f — f which acts on the set of bent functions, preserves the Hamming
distance.

If bent function f coincides with its dual, that is f = f it is said to be self-dual bent. A
bent function f which coincides with the negation of its dual, thatis f = f @ 1, is called
an anti-self-dual bent. The set of (anti-)self-dual bent functions in n variables, according
to [8], is denoted by SB¥ (n) (SB™(n)).

Denote, according to [10], the orthogonal group of index n over the field [, as

O, = [L € GL (n,Fy) |LLT = In] ,

where LT denotes the transpose of L and I, is an identity matrix of order n over the field F».

3 Isometric mappings and automorphism groups

A mapping ¢ of the set of all Boolean functions in n variables to itself is called isometric if
it preserves the Hamming distance between functions, that is

dist(p(f), ¢(g)) = dist(f, g),

for any f, g € F,,. The set of all isometric mappings of the set of all Boolean functions in n
variables to itself is denoted by Z,.

Example 1 Composition of an affine transform of coordinates and an affine shift, that is the
mapping of the form

f@x) — f(Lx®D) & (c,x)®d, )]

where L is an x n nonsingular binary matrix, b, ¢ € I}, d € F», is an element of Z,,.

The general form of isometric mappings of all Boolean functions in n variables to itself is

f&x) — f((x)) @ g(x),
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where 7 is a permutation on the set F} and ¢ € J;, [15]. The mapping of this form is
denoted by ¢ , € Z,.

Recall that a square matrix is called monomial (or generalized permutation matrix) if
it has exactly one nonzero entry in each row and each column. There is an one-to-one
correspondence between Z,, and the set of monomial matrices of order 2" x 2" with nonzero
elements from the set {4-1}. Indeed, consider arbitrary mapping ¢ ¢ € Z,.

Then for any f € JF, and its sign function

F= (=070, (=f 00, =/ =),
the sign function
Fl= (=700, (/o0 (=l 60,

of f/ = ¢z 4 (f) € F can be expressed as F' = AF, where A is a 2" x 2" monomial
matrix, constructed by the permutation 7 and the function g:
J

0

il .0 (=gt oL ],

0

in which in the i-th row a nonzero element (—1)8 (vi-1) is in the j-th column, where (j—1) is
anumber with binary representation 7w (v;—1). So the i-th component of the vector F' = AF
is equal to

(_l)f’(Vi—l) — (_l)f(?f(Vi—l)) . (_l)g(Vi—l) — _l)f(”(vi—l))@é’(vi—l)’
wherei =1, 2, ..., 2", from which it follows that

o) =fr@) gk, xel.

The group of automorphisms of a fixed subset M C F,, is the group of isometric map-
pings of the set of all Boolean functions in n variables to itself preserving the set M. It is
denoted by Aut (M).

The group of automorphisms of the set of bent functions was completely characterized
by Tokareva in 2010: it was proved that every isometric mapping of the set of all Boolean
functions in an even number n of variables to itself that transforms bent functions to bent
functions is a combination of an affine transform of coordinates and an affine shift [20], in
other words, it is described by (1).

4 Sign functions of self-dual bent functions
A non-zero vector v € C" is called an eigenvector of a square n x n matrix A attached to

the eigenvalue A € C if Av = Av. A linear span of eigenvectors attached to the eigenvalue
X is called an eigenspace associated with A.
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Consider a linear mapping ¢ : C* — C” represented by a n x n complex matrix A. A

kernel of i is the set
Ker () = {x e C"|Ax =0 € C"},

where 0 is a zero element of the space C".

Let I, be the identity matrix of size n and H, = H 1®” be the n-fold tensor product of the
matrix H; with itself, where

11
m-(11)

It is known the Hadamard property of this matrix
HyHT =2"Ion,

where HnT is transpose of H, (it holds HnT = H, by symmetricity of H,). Denote H, =
27"/2 H,,, this matrix is symmetric and orthogonal.
Recall an orthogonal decomposition of R?" in eigenspaces of H, from [2] (Lemma 5.2):

R?" — Ker (H,, + 2"/212n) @ Ker (H,, - 2”/212n> ,

where the symbol @& denotes a direct sum of subspaces.

Since all rows of the matrix H, correspond to sign functions of all linear functions
(see [4] for instance), equivalently, a bent function can be defined as a function whose sign
function, say F, satisfies H, F € {:i:l}zn. From the definition of self-duality it follows that
sign function of any self-dual bent function is the eigenvector of H,, attached to the eigen-
value 1, that is an element from the subspace Ker (H,, — I»») = Ker (H,, —n/ zlzn). The
same holds for a sign function of any anti-self-dual bent function, which obviously is an
eigenvector of #, attached to the eigenvalue (—1), that is an element from the subspace
Ker (H, + I) = Ker (H, +2"/?Ip»).

It is known that

dim (Ker (H,, + I»)) = dim (Ker (M, — I)) = 2",

where dim(V) is the dimension of the subspace V C R%". Moreover, from symmetricity of
H,, it follows that
(Ker (Hy, + In))* = Ker (H,, — Ion)
and
(Ker (H,, — I»n))* = Ker (Hy + ).
In [12] the following result was obtained:

Proposition 1 ([12], Theorem 2) Let n > 4, then the linear span of sign functions of (anti-)
self-dual bent functions in n variables has dimension 2"~ 1.

In other words, among sign functions of self-dual bent functions in n variables there
exists a basis of the eigenspace of the matrix H, attached to the eigenvalues 1, that is the
subspace Ker (H, — 2"/2I,»). Similarly, among sign functions of anti-self-dual bent func-
tions in n variables there exists a basis of the eigenspace of the matrix H,, attached to the
eigenvalues (—1), that is the subspace Ker (Hn + 2”/212").

For n = 2 there are two self-dual bent functions, namely x;x; and x;x; @ 1, which
have sign functions (1, 1, 1, —1) and (—1, —1, —1, 1) respectively. These sign functions are
linearly dependent vectors in R*. The set SB™(2) consists of functions xjx @ x; @ x7 and
X1x2@x1 ®x 1 with sign functions (1, —1, —1, —1) and (—1, 1, 1, 1) respectively. These
sign functions are linearly dependent vectors in R* as well.
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5 Isometric mappings preserving self-duality

In [7] (Theorem 1) it was shown that the mapping
f&x)— f(L(xD) ®{c,x)Dd,

where L € O,,c € F g, wt(c) is even, d € [F,, preserves self-duality of a bent function. It
is obvious that every mapping of such form is an element of Z,, with 7 (x) = L (x & ¢) and
g(x) = {c,x) ®d, x € IF}. The group which consists of mappings of such form is called an
extended orthogonal group and denoted by O, [5, 7]. It holds O,, < GL (n + 2, Fy).

Assume that n > 4 is an even integer. In this section we generalize this result within
isometric mappings from the set Z,,.

At first there is the question of how the sets of isometric mapping preserving self-
duality and anti-self-duality or, in other words, automorphism groups of the sets SB™ ()
and SB™ (n) are connected.

Proposition 2 For isometric mapping ¢z o € I, with matrix A the following conditions
are equivalent:

1) @x,¢ preserves self-duality;
2) g g preserves anti-self-duality;
3) AHH = Hn A.

Proof By Proposition 1 for n > 4 within the set SB™ (1) there exist a subset { f; }1.2:11 CSBT(n)
with linearly independent sign functions {F,»},?:l‘ C Ker(H, — I»») and a subset
{2}, < SB™(n) with linearly independent sign functions {G;}2", < Ker (H,, + I).
Prove that from the first assertions of the Proposition the second one follows. Assume
¢r,¢ preserves self-duality. Since the matrix A is a nonsingular one, the vectors {A F,-}%:ll
are also linearly independent sign functions of self-dual bent functions {go,,, g ( f,-)}?:ll c

SB™(n). Then for any sign function R € Ker (H, + I») of r € SB™ () we have
(AR, AF) = (ATAR, Fi) = (R, F)) =0

fori=1,2,...,2" !, hence it holds AR € Ker (H,, + I»») and immediately ¢r,g(r)€SB™ (n).
That is, for every anti-self-dual bent function r its image ¢, ¢(r) is also an anti-self-dual
bent function.
By using the same arguments one can show that from the second assertions the first one
follows as well, and we can conclude that the first and the second ones are equivalent.
Now prove the equivalence of the first and the third assertions. If AH, = H, A, then for
any sign function F of f € SB(n) it holds

H, (AF)=A(H,F) = AF,

hence the mapping preserves self-duality.
Denote B = H,A — AH, and assume that the mapping with matrix A preserves self-
duality and, as proved above, anti-self-duality. In particular, fori =1, 2, ..., 211 it holds

Mn (AF;) = AF;

and
H, (AG;) = —AG;.

@ Springer

194



Cryptography and Communications

Fori = 1,2, ...,2"! we have:
(HnA — AHy) Fi = Hy (AF) — A(HuFy) = Hu (AF;) — AF; = BF;.

Then BF; = 0 € R?" for everyi =1,2, .., 2"=1_ From the fact that the set {FI-}f:ll forms
a basis of the subspace Ker (H,, — I»n) it follows that all rows of the matrix B are vectors
from the subspace (Ker (H,, — Io» ))L = Ker (H,, + In).

Fori = 1,2, ..., 2"~ we also have

(HuA — AHn) Gi = Hy (AG;) — A (HnGi) = H, (AGi) + AG; = BGi.

Inthiscase BG; =0 ¢ R?" for everyi = 1,2, .., 27=1 Since the set {Gi}%:ll forms a basis
of the subspace Ker (H,, + I>») we can conclude that all rows of the matrix B are vectors
from the subspace (Ker (H,, + Ion ))J‘ = Ker (H, — In).

Thus, we have proved that all rows of the matrix B lie in Ker (H,, + I»»)NKer (H,, — Ion)
but the intersection of orthogonal subspaces consists only of the zero element of the space
R". Therefore the matrix B is zero matrix. O

Corollary 1 It holds
Aut (SBT(n)) = Aut (SB™(n)).

The criterion (condition AH, = H,A) can be reformulated as follows: if n > 4 then
isometric mapping ¢, € I, belongs to Aut (SB+(n)) if and only if for any x, y € I} it
holds

((x), ) @ g(x) = (x. 7' W) @ g (v ).

From Proposition 2 it follows that the problem of characterization of isometric mappings
with considered properties is directly linked with the problem of enumerating all monomial
matrices of order 2" x 2" with elements from the set {0, &1}, which commute with the
matrix H,. The solution of this problem is given by the following

Theorem 1 Isometric mapping ¢ , € L, preserves (anti-)self-duality if and only if
ax)=Lx®dc), x €y,

and
g(x) = (c,x)®d, x € F3,

where L € Oy, ¢ € T}, wt(c) is even, d € 3.

Proof The opposite direction immediately comes from [7] (Theorem 1).

Assume that A is a matrix of the mapping ¢, , € Z, preserving (anti-)self-duality. Let
T,,r be a sign function of an affine function /(x) = {(a, x) @ r, where a, x € F5,r € F>. In

other words 7, , is equal to some row (column) of the matrix H, if r = 0 or (—H,,) in the
case r = 1. From Proposition 2 it follows that AH,, = H, A hence

Hp (AT, ) = A (HnTar) = 226 . Aey = 220" - ey,
where k, k' € {1,2,...,2"}, 0,0’ € {&1}. Then
ATa,r = 2n/20/ . ’H,,ek/ = Ta’,r/

for some a’ € F},r' € 5.
Thus, the considered mapping transforms the set of all affine functions in n variables to
itself hence it has form

f@x) — f(Lx®b) @ (c,x)Dd,
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where L is an x n nonsingular binary matrix, b, ¢ € I}, d € [F2, see [14], for example.
Now consider the relation A H,, = H,, A in details. Recall that

(=1)fvo-vo) (=Dfvovn) (_1)(V0,V2n71)
(=Dl vy (vva)

(_1)<V2"71,V0> (-])(VZ”—lvV1> .. (_1)<V2"71,V2"71>
The i-th row of the matrix A has the following form
J
(0...0nlvn®do. o),
where the nonzero element (—1)(“’“'—1 )®d ig in the j-th column, where (j — 1) is a number

with binary representation (Lv;,_1 @ b).
Fix arbitrary i, j € {0, 1, ..., 2" — 1}. Write explicitly

(AHy)i41 j41 = (~DlMI(bioby)ed
The j-th column of the matrix A has the following form
0
0
(= DleL7 (vi-19b))ed
0

~.

0
-1 .. . . .
where the nonzero element (— 1)<C’L (vj-180))®d i in the i-th row, where (i —1) is a number

with binary representation L~ (v j—1® b).
Then it clear that

(HyA)i o1 = (—D¥eE (r@ele L7 (v@b)ed

Since AH, = H, A implies (AH,); 1, j+1 = (HpA)j1y, j41 foranyi, j € {0, 1,...,2" —
1}, the following relation must hold

(_1)(c,v,-)€9<Lv,-EBb,Vj)eBd — (_1)<V,‘,L’1(V_,'@b))@(C,L71(Vj@b))@d
or, equivalently,
ex)@Lxobyod=(vL" venel.L" vanled @

for any x, y € IF5.
Put zero vector y € IF7 in (2). Then

(e.x) = (v, L") @ (e, 170),
<x,L*1b@c>: <c,L*‘b>
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for any x € IF}. Then

L 'b@®c=0,
le.L7'b) =0,
b= Lc,
{ wt (c) is even. )
Return to (2) and take (3) into account:
(c,x) ® (Lx ® Le, y) = <x, I'ye Lc)> ® <c, I'ye Lc)),
(c,x)®(Lx,y) ®({Lc,y) = <x, L71y> ®(x,c)® (c, L*1y> ®(c, 0,
(Lx,y) ® (Lc,y) = (x, L_1y> o <c, L_1y>,
—1 T
(Lada.={(L7") xao.y).
for any x, y € 7. In this case
T
Lx@c)= (L—l) (x @ c)
for any x € I} that is
T
Lo =(t7") @
for any z € IF). It holds if and only if
T
L=(17")". )
Thus, combining (3) and (4) we obtain
Lt =1L"
b= Lec,
wt (c) is even.
O

Corollary 2 It holds .
Aut (SB*(n)) = O,.

It can be concluded that from Proposition 2 and Theorem 1 it follows that the group
of automorphisms of the set of (anti-)self-dual bent functions coincides with the extended
orthogonal group, that is

Aut (SBT(n)) = Aut (SB™(n)) = O,.
5.1 Sets of (anti-)self-dual bent function in two variables

The case n = 2 is out of the ordinary, because, in particular, Propositions 1 and 2 do not
hold. Indeed, consider isometric mapping ¢ ¢ € Z, with the followong matrix:

0 -100
0 001
A=1_1000
0 010
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It transforms sign function (1, 1, 1, —1) of self-dual bent function f (x1, x2) = x1x3 to its
negation (—1, —1, —1, 1) and sign function (1, —1, —1, —1) of anti-self-dual bent function
f (x1,x2) = x1x2 @ x1 @ x7 to itself, that is this isometric mapping preserves both self-
duality and anti-self-duality. But we have

-1 1 -1 1 -1-11 1

1 -1 -1 1 -1 -1-1 -1
AHn = -1 -1-1-1}" HnA = 1 -1 -1 1 ’
1 1 —1-1 1 -1 1 -1

and AH, # H,A.

Consider another isometric mapping ¢, o+ € I, with the followong matrix:

0010
0 00 -1
0100
-100 0

A =

It transforms sign function (1, 1, 1, —1) of the self-dual bent function f (x1,x2) = x1x2
to itself but sign function (1, —1, —1, —1) of the anti-self-dual bent function f (x1, x) =
X1Xx2 @ x1 @ x7 it transforms to sign function (—1, 1, —1, —1) of bent function f (x1, x2) =
x1x2 @ x2 @ 1 which is neither self-dual nor anti-self-dual, that is this isometric mapping
preserves self-duality but does not preserve anti-self-duality.

6 Isometric bijections between self-dual and anti-self-dual bent
functions

It is known [2] (Theorems 5.1, 5.3) that there exists a bijection between SB™(n) and
SB™(n), based on the decomposition of sign functions of (anti-)self-dual bent functions.
Also note that from the existence of such bijection it follows that |SB+(n)| = |SB’(n)|.

Namely, let (Y, Z) € {:l:l}zn, where Y, Z € {:I:l}znfl, be a sign function for some
f € SBt(n). Then a vector (Z, —=Y) € {:H}zn is a sign function for some function from
SB™ (n). In terms of isometric mappings the mentioned transform can be represented as
J@) — fx@c)@(c.x),
where ¢ = (1, 0,0, ...,0) € ;.
In paper [8] it was mentioned that the more general form of this mapping
J@) — fx@c)@(c.x),

where ¢ € I}, wt(c) is odd, is a bijection between SB*(n) and SB™(n). It is obvious that
every mapping of such form is an element of Z,,.

Assume that n > 4 is an even integer. In this section we generalize these results within
isometric mappings from the set Z,,.

Proposition 3 Isometric mapping ¢z, € I, with matrix A is a bijection between SB™ (n)
and SB™ (n) if and only if AH,, = —H,A.

Proof If H,A = —AH,, then for any sign functions F, R of f € SB™(n) andr € SB™ (n)
respectively it holds
H, (AF) = —A(H,F) = —AF,
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H, (AR) = —A (H,R) = AR,

hence the mapping is a bijection between SB™ (1) and SB™ (n).
Take { ﬁ}?:ll C SBT(n) with linearly independent sign functions {Fi}f:ll -

Ker (H,, — I»») and {gi},'z:]l C SB™(n) with linearly independent sign functions

{G,'}iz;1 C Ker (H,, + Ir») from the proof of the Proposition 2. Denote B = H,A + AH,
and assume that the mapping with matrix A is a bijection between SB™ (1) and SB™ (n). In
particular, fori =1, 2, ..., 271 it holds

Hu (AF;) = —AF;
and
Hn (AG)) = AG,;.
Fori =1,2,..,2" ! we have
(HhA+AH,) F; =H, (AF) + A(H, F;) = Ha (AF;) + AF; = BF;.

Then BF; = 0 € R?" for everyi = 1,2, ..., 2"=1 Since the set {Fi},'zl_ll forms a basis of the
subspace Ker (H, — I»), it can be deduced that all rows of the matrix B are vectors from
the subspace (Ker (M, — ) = Ker (H,, + I»).

Fori = 1,2, ..., 2" ! we also have:

(HnA + AHn) G = 7'Ln (AFt) +A (HnGi) = Hn (AGI) - AGl = BG;.

In this case BG; = 0 € R?" for everyi = 1,2, .., 2"=1 Since the set {Gi}%:ll forms a basis
of the subspace Ker (H,, 4+ I>»») we can conclude that all rows of the matrix B are vectors
from the subspace (Ker (H,, + I ))J‘ = Ker (H, — In).

Thus, we have proved that all rows of the matrix B lie in Ker (H,, + I»»)NKer (H,, — Io»)
but the intersection of orthogonal subspaces consists only of the zero element of the space
R". Therefore the matrix B is zero matrix. O

The criterion (condition AH,, = —H, A) can be reformulated as follows: if n > 4 then
isometric mapping ¢, € Z, is a bijection between the sets SB™ (n) and SB™ (n) if and
only if for any x, y € ] it holds

(0.5 @ g = (x. 7' W)@ g (7T W) @ 1.

Theorem 2 Isometric mapping ¢x o € L, is a bijection between SB™ (n) and SB™ (n) if
and only if

7(x)=L(x®c), x € F},
and

g(x) ={c,x)®d, x e,
where L € O, ¢ € I, wt(c) is odd, d € F».

Proof Let f € SB*(n) USB™(n) that is f: f @ ¢ for some ¢ € F,. Consider a function
g) = fILx D) @ (c,x) ®d, where L € Oy, ¢ € F}, wt(c) is odd, d € Fa. Its

@ Springer
199



Cryptography and Communications

Walsh-Hadamard transform is
We(y) = Z (_1)(%)’)@}3(}6) — Z (_1)(X»Y)GBf(L(XGBC))@(C,X)@d
xelf} xelf}
— (—l)d Z (_1)<x,y®c>€B.f(L(x€Bc)) — (—l)d Z (_1)<L’]z®c,y®c)®f(z)
xelF} zel
— (_1)d€9(c,y)®(c,c) Z (_1)(2,L(y®c))€9f(z)
zelf;
= (= 1)d®len®Ign/2(_1)FLO®) — gn/2(_ 1) LEB)S(e.y)@dee]
= 2M/2(_1)sM®e®1 _ 2n/2(_1)§(y)’
hence 2(y) = g(y) @ e @ 1 forany y € I} The opposite direction has been proved.

By using the same arguments as in the proof of the Theorem 1 it can be deduced that the
considered isometric mapping preserves affinity of a Boolean function and therefore has
form

f@x) — f(Lx®b) D (c,x)Dd,

where L is a n x n nonsingular binary matrix, b, ¢ € F5, d € F».
From Proposition 3 it follows that AH, = —H,A. Recall from the proof of the
Theorem 1 that
(AHn)i+l,j+l — (_l)(C,V,')@(LV,’G)h,Vj)EBd’

(HyA)igy, j = (DL (i@h)jele L7 (v @b)jed

forany i, j € {0, 1,...,2" —1}.
Since AH, = —H,A implies (AHy)11j41 = —(HpA)jqy j41 for any i, j €
{0, 1, ..., 2" — 1}, the following relation must hold

(_])<c,v[>ea(Lv,~eab,v,)ead _ (_1)(v,.,L—1(vj@b))ee(c,L—l(vj@h))@deel
or, equivalently,
. x)®(Lx®b,y)dd = <x,L*1 (y@b)>ea<c,r‘ (y@b)>ead@ 1o

for any x, y € F}.
Put zero vector y € I in (5). Then

(c,x) = (x, L_1b> &) (c, L_1b> ®1,
<

<x, L v c> ={c, L_lb> ®1

for any x € IF}. Then

L '"b@®c=0,
(e.L71p) =1,
b= Lc,
{ wt (c) is odd. ©)
Return to (5) and take (6) into account:
(c,x) ®(Lx ® Lc,y) = <x, L~} (y® Lc)> ® (c, L~! (yo® Lc)> ®1,
(c,x)® (Lx,y) D (Lc,y) = <x, L_1y> D (x,c) P <c, L_]y> @®{c,c)dl,
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(L, y) @ (Le,y) = (x. L7y ) @ (e, L7'y),

T
(Lx®e),y) =<(L—1) (xeac),y>

for any x, y € IF;. It holds if and only if
N
L=(17")". )

Thus, combining (6) and (7) we obtain

Lt =1L"
b= Lc,
wt (c) is odd.

7 Isometric mappings and the Rayleigh quotient of the Sylvester
Hadamard matrix

In this section isometric mappings from the set Z,,, which preserve and change the sign of
the Rayleigh quotient (Rayleigh ratio) of the Sylvester Hadamard matrix defined for every
Boolean function in »n variables, are studied.

7.1 Definition and characterization

In [2] the Rayleigh quotient Sy of a Boolean function f € JF, was defined as

Sy = Z (_I)Af(x)@f(y)@(x,y) — Z (—l)f(y)Wf(y).

x,yel} yeF,
For any f € B, the normalized Rayleigh quotient Ny is a number

Ny = Z (=) WeF) — 2712,

n
xeF)

In [2] (Theorem 3.1) it was proved that for any f e F, the absolute value of S is at
most 23"/2 with equality if and only if f is self-dual (+23/2) and anti-self-dual (—23"/2)
bent function.

In the article [5] the operations on Boolean functions that preserve bentness and the
Rayleigh quotient were given. Namely, it was proved that for any f € B,,L € O,,c €
I}, d € I, the functions g, h € B, defined as g(x) = f (Lx) @dand h(x) = f (x B ) @
{c, x) provide Ny = N and N, = (= 1) N

One can notice that the mentioned operations are isometric mappings from Z,,.

Assume that n > 4 is an even integer. In the following subsections we generalize these
results within isometric mappings from the set Z,,.

7.2 Isometric mappings preserving the Rayleigh quotient

Theorem 3 Isometric mapping ¢, € I, preserves the Rayleigh quotient if and only if it
preserves self-duality.
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Proof For straight direction it is enough to mention that Sy = +23"/2 if and only if f €
SB™(n) ([2], Theorem 3.1).

Assume that the mapping ¢ , preserves self-duality. Let A be its matrix. Then by Propo-
sition 2 we have AH, = H,A. Take arbitrary f € JF, and rewrite the Rayleigh quotient in
the following form:

Sp= Z (_l)f(x)GBf(y)GB(x,y) = (F, H,F),
x,yeR!
where F is a sign function of f. The mapping preserves the Rayleigh quotient if
Sero(f) = (AF, Hy (AF)) = (F, H, F) = Sy.
Consider

(AF. H, (AF)) = (AF. A (H,F)) = <ATAF, H,,F) — (F. H,F),

therefore ¢ , preserves the Rayleigh quotient. O

Corollary 3 Isometric mapping ¢ o € I, preserves the Rayleigh quotient if and only if
ax)=Lx®c), x €F5,

and
g(x) =(c,x)®d, x €5,

where L € Oy, ¢ € IF}, wt(c) is even, d € F».

7.3 Isometric mappings changing the sign of the Rayleigh quotient

Theorem 4 Isometric mapping ¢ ¢ € L, changes the sign of the Rayleigh quotient if and
only if it is a bijection between SB™ (n) and SB™ (n).

Proof For straight direction it is enough to mention that Sy = +23/2 if and only if
f € SBT(n) and S§ = —23/2 if and only if f € SB™(n) ([2], Theorem 3.1).

Assume that the mapping ¢ ¢ is a bijection between SB*(n) and SB™(n). Let A be its
matrix. Then by Proposition 3 we have AH, + H, A = 0. Take arbitrary f € JF, and rewrite
the Rayleigh quotient in the following form:

Sp= Z (_l)f(x)@f(y)€9<x~,y) = (F, H,F),
x,yel;

where F is a sign function of f. The mapping changes the sign of the Rayleight quotient if
Spro(f) = (AF, Hy (AF)) = — (F, Hy, F) = —Sy.

Consider
(AF, Hy (AF)) = (AF, —A (H, F)) = — (AT AF, HyF) = = (F, Hy F),
therefore ¢ , changes the sign of the Rayleigh quotient. O

Corollary 4 Isometric mapping ¢ o € I, changes the sign of the Rayleigh quotient if and

only if
ax)=Lx®c), x €F5,

and
gx) ={c,x)®d, x € F,
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where L € Oy, ¢ € F}, wt(c) is odd, d € 5.
From Theorems 3 and 4 it follows

Corollary 5 Isometric mapping ¢r ¢ € 1, which preserves the Rayleigh quotient or
changes the sign of the Rayleigh quotient, also preserves bentness.

7.4 Isometric mappings preserving the Hamming distance between bent function
and its dual

The Rayleigh quotient characterizes the Hamming distance between a bent-function and its
dual. Indeed, let f € B, then

1 1
. -1 -1
dist (£.f) = 27! = gy S =27 = 3Ny

Theorem 5 Isometric mapping ¢z o € I, preserves bentness and the Hamming distance
between any bent function in n variables and its dual if and only if it preserves (anti-)self-
duality.

Proof If ¢ 4 preserves the Hamming distance between any bent function in n variables and
its dual then it preserves (anti-)self-duality.

If @5 4 preserves (anti-)self-duality then by Theorem 3 it preserves the Rayleigh quotient
and from Theorem 1 it follows that this mapping preserves bentness. The characterization
of the Hamming distance between a bent function and its dual in terms of the Rayleigh
quotient yields the result. O

The form of such mappings is described by Theorem 1.

8 Summary

In this section we summarize and group results from the paper.

Assume that n > 4 is an even integer.

Let ¢ ¢ be an isometric mapping of the set of all Boolean functions in n variables to
itself with matrix A, namely

Prg f(xX) — [ (@) @ g(x),

where 7 is a permutation in [}, and g € J;,. The matrix A is the following
J
0
il .0 (=Dt o],

0
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in which in the i-th row a nonzero element (—l)g("i—l) is in the j-th column, where (j — 1)
is a number with binary representation 7 (v;_1).

Theorem 6 The following conditions are equivalent:

1) g ¢ preserves self-duality;

2) g g preserves anti-self-duality;

3) @n,g preserves the Rayleigh quotient of every Boolean function;

4)  @g,g preserves bentness and the Hamming distance between any bent function and its
dual;

5) 7(x)=Lx®c),gx)={c,x)®d, where L € O, c € F3, wt(c) is even, d € F;

6) AH,=H,A.

Theorem 7 The following conditions are equivalent:

1)  ¢n¢ is a bijection between SB*(n) and SB™(n);

2)  @g,¢ changes sign of the Rayleigh quotient of every Boolean function;

3) mr(x)=L(x®c),gx) ={c,x)®d, where L € Oy, c € F;, wt(c) is odd, d € Fy;
4)y AH, = -H,A.

Recall that the extended orthogonal group O, consists of mappings of all Boolean
functions in n variables to itself which have form

J&x)— f(Lx®c) D (c.x) Dd,

where L € Oy, ¢ € I, wt(c) is even, d € .
The group of automorphisms of (anti-)self-dual bent functions is characterized by the
following

Theorem 8 It holds
Aut (SBT(n)) = Aut (SB™(n)) = O,.

From the obtained results it follows that an approach to equivalence of self-dual bent
functions in n > 4 variables based on the restricted form of affine equivalence proposed
in articles [2, 7] is the most general within isometric mappings of the set of all Boolean
functions in n variables to itself.

9 Conclusion

In current paper isometric mappings of all Boolean functions in n > 4 variables to itself
preserving self-duality and anti-self-duality of a Boolean bent function were completely
studied. The obtained results were used to determine isometric mappings preserving the
Rayleigh quotient of a Boolean function and isometric mappings preserving bentness and
the Hamming distance between any bent function and its dual. The group of automorphisms
of the set of (anti-)self-dual bent functions is obtained.

An interesting open problem is to characterize isometric mappings preserving self-
duality which are not necessarily isometric mappings of the set of all Boolean functions in
n variables.
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Abstract—It is well known that every stream cipher is based on
a good pseudorandom generator. For cryptographic purposes we
are interested in generation of pseudorandom sequences of the
maximal possible period. A feedback register is one of the most
known cryptographic primitives that is used in construction of
stream generators. In this paper we analyze periodic properties
of pseudorandom sequences produced by filter and combiner
generators (two known schemes of stream generators based on
feedback registers). We determine which nonlinear functions
in these schemes lead to pseudorandom sequences of the not
maximal possible length. We call such functions unsuitable and
count the exact number of them for an arbitrary n.

Index Terms—stream cipher, filter generator, combiner gener-
ator, gamma, Boolean function

I. INTRODUCTION

Symmetric ciphers usually are divided into block and stream
ones. Stream ciphers are considered as more fast but not as
secure as block ciphers. One of the most known cryptographic
primitives that is used for stream ciphers construction is a
feedback register. There are attacks [6] and defenses [5] on
such ciphers.

Remember that a feedback shift register (FSR) contains two
parts: a binary block * = (z,—1,...2¢) of length n and a
feedback function f : (,—1,...,20) — {0,1}, where f is a
Boolean function in n variables. First, we fill the block x with
concrete values of bits; together they form the initial state of
the register. For functioning of the FSR the time is considered
to be discrete, i. e. it is divided into clock cycles. On each
clock cycle, the value of f(x) is calculated first, then the state
x = (2p_1,...,21,%0) of the register will be changed to the
state @' = (xn—2,...xo, f(x)) while the bit x,,_; will be
written as the first bit of the generated sequence gamma.

The properties of gamma generated by FSR are well studied
in case when f is a linear function. If f is nonlinear, [7],
then there are too many open questions with properties of
gamma that all are connected to analysis of nonlinear recurrent
sequences, [4] and [3]. That is why in cryptography some
nonlinear combinations of linear FSRs are considered, for
instance —- filter and combining models of stream generators
based on LFSR, [1].

The work was carried out within the framework of the state contract of the
Sobolev Institute of Mathematics (project no. 0314-2019-0017) and supported
by Russian Foundation for Basic Research (project no. 18-07-01394) and
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In this paper we analyze pseudorandom sequences produced
by filter and combiner generators. Namely, we study which
nonlinear functions & in these schemes lead to pseudorandom
sequences such that their length are not maximal possible. We
call such functions unsuitable and count the exact number of
them for an arbitrary n.

II. PRELIMINARIES

A Boolean function in n variables is a function of the form
f:F% — Fy, where F = {0, 1}" is a set of all binary vectors
of length n.A linear feedback shift register (LFSR) consists of
two parts: a binary vector

= (Tp_1,-.-Z0o)

of length n and a linear state function

fi(xp_1,...,m0) = {0, 1},

where f is a Boolean function in n variables. A state of
the register is a filling of vector x. During the encryption
the register is changing its state using the feedback function.
Gamma is a pseudorandom sequence generated by LFSR. A
period is a length of repeating part of gamma.

Also, LFSR can be specified using feedback polynomials.
It is a polynomial of degree n defining bits to be summed. If

f(xn—la <.

than the corresponding feedback polynomial is defined as

S Z0) = AoTp—1 B G Tp—2 B - B apn_1T0,

p(z) = apz™ + az" Va2 + 1.

If p(z) is a primitive polynomial, i.e. the primitive element of
the field GF'(2") is its root, then the period of a pseudorandom
sequence generated by LFSR is maximal, i.e. is equal to 2" —1.
Thererfore, linear feedback shift registers are usually considers
with primitive polinomials.

III. THE ANALYSIS OF GAMMA FOR LINEAR FEEDBACK
SHIFT REGISTER GENERATORS

A. Filter generators

The filter generator consists of a single shift register of
length n with a linear feedback and uses a primitive poly-
nomial to change states. A Boolean function h(z,—1,...,Z0)
generates a pseudorandom sequence gamma.
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gamma

Fig. 1. Filter generator.

The work of the filter generator is shown in fig. 1, [8].
Let be v = (y1y2...yan—1), where h(z,_1,...,29) =
Y1, h(;Un,Q7 ..., X0, f(iL‘nfl, ey 1‘0)) = 9, etc.. Since the
state g = (0,...,0) is not used, the number of all states
equals 2™ — 1. A Boolean function can generate gamma with
the period from 1 to 2" — 1. In this paper we study how
does the choice of the Boolean function A affect on periodic
properties of generated gamma. Namely, we would like do
determine all Boolean function h in n variables that lead to
gammas with non-maximum period. Let us call such functions
unsuitable. Note that the number of Boolean function does
not depend on the linear state function. We give examples of
suitable and unsuitable functions. Let n = 4 be a length of
shift register, p(z) = z*+23+1 be primitive polynomial, h; =
L1203 D ToToxs Dr1T3Px102 DT3B r3ProBr1P1
and ho = 2913 @ T122 P xox3 D T3 ® 1 © 1 be Boolean
functions.

TABLE I
EXAMPLES OF SUITABLE AND UNSUITABLE FUNCTIONS

conditions | hj(zs,x2,21,%0) | h2(zs,z2,21,%0)
0001 1 1
0010 0 0
0100 0 1
1001 1 1
0011 0 0
0110 0 1
1101 1 0
1010 0 1
0101 0 1
1011 1 0
0111 0 1
1111 0 0
1110 1 1
1100 0 1
1000 0 0

As we see, hy generates gamma with period equals 3 and
ho generates gamma with period equals 15.

Theorem 1. Let n be an integer and
2" —1=p"'py?...p5¢

where p; are distinct prime numbers, o; > 0, s is an
integer. Then the number of unsuitable Boolean functions in

n variables for filter generators is equal to

9 Z ((71)61+~-+ﬁs+12p§”7ﬁl...pi’s“*)’

BEF3, 370
where 8= (B1,...,Bs)-
Proof. Since 2" — 1 = p{'p5®...pg the sequence can

be divided into blocks of length pilpg" ...pls, where iy =
0,...,a;5 and >3°_ i; < Y75, a;. Let us denote such
blocks as By, i,,..i, = (ylyg...ypilpézmpis). Let the de-
gree of a block be denoted as degree(B;, i,, . i) =
ijl ij. For blocks B i, ... and By, j, . ., where
ged(pp2 ... pte pltpl . ple) = phiphr L pke, et us call
block By, ks.....k, as a common block. The number of un-
suitable sequences can be calculated using all possible blocks
Bi, i,,...i, of degree less than 2;21 aj. Consider all such
blocks Bi, i,,...i,» Where 327 i; = >°°_;(a;) — 1. These
blocks include all blocks of degree less than 2;21 oj. Let
us count the number of blocks that are common for blocks of
degree equal to Z‘;’f:l (cj)—1. Thus, the number of unsuitable
sequences can be calculated as

s

S

aq a;—1 ag
Z<2p1 SE AR |

i=1

where A is the number of blocks which are common for blocks
of degree equal to (3°7_, o) — 1.

For any two blocks Bg,, . (au—1),..ap,..,a, and
Bai,....a0,. (ap—1),...,a, accordingly, there will be a common
block B, .. (aa—1),....(ay—1),....cs- Lhus, the number of
unsuitable sequences can be calculated as

S

! a;—1 as aq (aj—1) (aj—1) as
§ (2p1 —py Py )_ § : 2p1 —py D B +B

i=1 1<i<j<s

where B is the number of blocks which are common for
blocks of degree equal to (ijl a;) — 2. So, we continue in
this way until we reach a common block between all blocks,
namely B, —1),(as—1),...,(as—1) » and its degree is equal to
(Zj‘:1 ;) —s. Therefore, the number of unsuitable sequences
is

(g —1)

2—1)
2P1

po2..p%s +2p§v1péa pSs 4 .+2p§¥1pg2___pgas—1>

Qs

1 —1
p{*1 D pr2 = o B

—1 -1
_9 P 2p(1a1 >p;2péa3 )

(g—1—1) —
DRI SR N E U

a1—1) (ag—1 as—
(aq )pg2 )mpg 1)'

+ (-1l

We can write all states of our register one by one: from one
state we get the second one as the next state. Consider the
vector of values of a Boolean function & that generates our
gamma. Since in our set of states there is no zero state (it
generates the cycle of length 1), our function h can take any
value (0 or 1) on the zero vector. That is why there are exactly
two Boolean functions that generate the same sequence.
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So, the number of unsuitable functions is

_1 -1
Pgal )p;’@mprsls + 217?11);&2 )...pgs

2(2

(s —1)
s —

al_a
e 21)111022“47

(alfl)p;az—l)pgq (al—l)pgzp:(iag’—l) as

_ 9p1 =PI _ 9P P
(g_1—1) _
e op eyl ple Y
C1apeimD (aa=1) (ag-1)
+ (=157 tepn T P ety O

B. Combiner generators

Combiner generators use several linear feedback shift reg-
isters and each register has its own length n; and use its own
primitive polynomial for changing states. A Boolean function
hXm—1,...,Xo) where X; is a register bit string ¢ which
generates pseudorandom sequence gamma. The work of the

LFSR1 |

LFSR2 |

LESRm |

Fig. 2. Combiner generator.

combiner generator is shown in fig.2, [8]. Since we do not
use the zero state the total number of states does not exceed
(2m —1)(2" —1)...(2" —1). In this case, the maximum is
reached at ged(n;,n;) =1 where ¢,j =1,...,m, i # j. Then
the Boolean function can generate a gamma with the period
from 1 to (2" —1)(2"2—1)...(2"™ —1). Boolean functions h
in n variables leading to gammas generated non-maximum pe-
riod are called unsuitable. Show that ged(2™ —1,2" —1) =1
where i,j =1,...,m, i # j.
(2" — 1,2 —1) = (2™ — 2™ 2™ — 1) =
= (2 —1,2m — 1) =2mem) 1 =21 —1=1.

For better understanding [2]. It means that each factor (2™ —1)
can be divided into
Akqy ko Qg

pk?l ka . pk:,

Theorem 2. Let n be an integer,

m
> nmi=n,
i=1

where i,j=1,...,m, i # j. And

2" =1E2™ =1)... (2" =1) = p"py* ... P,

where p; are different prime numbers, «; > 0, s is an
integer. Then the number of unsuitable Boolean functions in
n variables for the combiner generators is equal to

22“’1+”2+"‘+717n — (2" —1)(2"2 —1)...(2"™m —1) .

Z ((_1)61+-~+B5+12p‘1‘1’ﬁ1 p2sTBs ),
BEF3,B£0

where ﬂ = (ﬁla SRR 768)’

Proof. Number of sequences for the combiner generators is
equal to ZBE]FS,/#O((—1)51+"'+IBS+12PT17B1~~P?'§_ﬁs). Proof
of this is simifar to proof of number of sequences for the
filter generators in theorem 1. As we use only (2" —
1)(2" —1)...(2" — 1) states and a total number of states
is equal to 2™ . 272 2"m = QMitnatFnm then we have
2tz m (901 _1)(2"2 —1) ... (2™ —1) states, where
our function can be equal O or 1. Therefore, for one this state
we have two functions. In this way, the number of unsuitable
Boolean functions in n variables for the combiner generators
is equal to

22"1+"2+“‘+"m—(2"1 —1)(2"2—1)...(2"m —1)

S (g
BEFs,87#0

where 8 = (81,...,0s). O
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Abstract

Almost perfect nonlinear functions possess the optimal resistance to the dif-
ferential cryptanalysis and are widely studied. Most known construction of APN
functions are obtained as functions over finite fields For and very little is known
about combinatorial constructions in 4. In this work we proposed two approaches
for constructing quadratic APN functions in F4y. The first approach exploits a sec-
ondary construction idea, it considers how to obtain quadratic APN function in
n+ 1 variables from a given quadratic APN function in n variables using special re-
strictions on new terms. The second approach is searching quadratic APN functions
that have matrix form partially filled with standard basis vectors in a cyclic manner.
Also, we conjectured that a quadratic part of an arbitrary APN function has a low
differential uniformity. This conjecture allowed us to introduce a new subclass of
APN functions, so-called stacked APN functions. We found cubic examples of such
functions for dimensions up to 6.

1 Introduction

Let us recall some definitions. Let F} be the n-dimensional vector space over Fy. A
function F' from F} to F7', where n and m are integers is called a vectorial Boolean
function. If m = 1 such a function is called Boolean. Every vectorial Boolean function
F' can be represented as a set of m coordinate functions F = (fi,..., fm), where f; is a
Boolean function in n variables. Any vectorial function F' can be represented uniquely in
its algebraic normal form (ANF):

Fo)= Y a0,

IeP(N) i€l

*The work was carried out within the framework of the state contract of the Sobolev Institute of
Mathematics (project no. 0314-2019-0017) and supported by Russian Foundation for Basic Research
(projects no. 18-07-01394 and 20-31-70043) and Laboratory of Cryptography JetBrains Research.
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where P(N) is a power set of N = {1,...,n} and a; € F'. The algebraic degree of a
given function F' is the degree of its ANF: deg (F) =max{|I| : a; # 0,1 € P(N)}. If
algebraic degree of a function F' is not more than 1 then F' is called affine. If for an affine
function F' it holds F'(0) = 0 then F is called linear. If algebraic degree of a function F
is equal to 2 then F'is called quadratic.

Two vectorial functions F' and G are eztended affinely equivalent (EA-equivalent) if
F = A 0Go Ay + A where Ay, Ay are affine permutations on F} and A is an affine
function. Two functions F' and G are called Carlet-Charpin-Zinoviev [6] equivalent (CCZ-
equivalent) if their graphs {(z,y) € Fy x Fy | y = F(z)} and {(x,y) € F§ xF} | y=G(z)}
are affinely equivalent, that is, if there exists an affine automorphism A = (A, Ay) of
F2 x F such that y = F(z) < As(x,y) = G(Ai(z,y)).

Let F' be a vectorial Boolean function from F} to F}. For vectors a,b € F, where
a # 0, consider the value

5(a,b) = [{ z € F} | F(z + a) + F(z) = b}|.
Denote by Ar the following value:
Ap = max 06(a,b).

a#0, beFy

Then F'is called differentially Ap-uniform function. The smaller the parameter A is
the better the resistance of a cipher containing F' as an S-box to differential cryptanalysis.
For the vectorial functions from F} to F} the minimal possible value of Ap is equal to
2. In this case the function F' is called almost perfect nonlinear (APN). This notion was
introduced by K. Nyberg in [8].

APN fuctions draw attention of many researchers, but there is still a significant list
[5] of important open questions, such as lower and upper bounds on the number of APN
functions, an upper bound on algebraic degree of an APN function [4], the existence of
bijective APN functions in even dimensions, etc. We are especially interested in two
open problems that are devoted to constructing APN functions. The first one is to find
secondary constructions of APN functions, in particular, it was stated as Problem 3.8 in
[5]. The second problem is to find new constructions of APN functions in vectorspace F5,
since almost all the known constructions of this class are found only as polynomials over
the finite fields, and to the best of our knowledge, the only approach to such combinatorial
constructions was proposed in [7].

In this work we propose two approaches for generating quadratic APN functions in
F%. The first approach considers the algebraic normal form of a given quadratic APN
function GG in n variables and extends it into an ANF of a quadratic function F'in n + 1
variables, using special restrictions on coefficients of new terms. In the second method we
consider special matrices that are partially filled with vectors of standard basis and search
for corresponding APN functions using the same idea of restrictions. Generally, quadratic
APN functions are not suitable as secure S-boxes due to the low algebraic degree, but
obtaining new quadratic representatives can lead us to another useful functions. This is
very important for even n > 8, since new APN permutations CCZ-equivalent to quadratic
functions can be found for these dimensions [3].
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ON SECONDARY AND CYCLIC CONSTRUCTIONS OF QUADRATIC APN FUNCTIONS

In the last part of the work we conjectured that a quadratic part of an arbitrary APN
function has a low differential uniformity. We introduced the new notion of stacked APN
function and for dimensions up to 6 found such functions using quadratic APN functions
obtained with approaches mentioned above.

2 On secondary construction of quadratic APN functions

Since F A-equivalence preserves APNness, it is always possible to omit linear and constant
terms in the algebraic normal form of a given APN function. Further we will consider
quadratic vectorial Boolean functions that have only quadratic terms in their ANF. The
following theorem gives a necessary condition on the ANF of a given APN function.

Theorem 1. [1] Let F' = (fy,..., f.) be an APN function in n variables. Then every
quadratic term x;x;, where i # j, appears at least in one coordinate function of F.

This property motivated us to suggest the following construction of quadratic APN
functions. Let G = (g1,...,9,) be a quadratic APN-function in n variables. Consider
vectorial function F' = (f1,..., fu, fur1) in n + 1 variables such that:

n
fi=g+ E Q1T Tpi1;
i=1

fn = 0gn + Z O Liln+15 (1)

=1

n
frt1 = Gn+1 + E Q1,0 Tni1,
i=1

where ay;...,ap41; € Fo for i = 1,...,n and ¢,41 = ZKKK” Bjkx;xy for some
fixed B;; € F5. Note that if a4, ..., @, are such that each term z;x,,, appears at least
in one of the coordinate functions fi,..., f,, then the necessary condition of Theorem 1

is held for the constructed function F'. Since the exhaustive search for the given APN
function becomes complicated starting from n = 6, there is a need to find necessary and
sufficient conditions on new coefficients of F'.

Let us denote the lexicographically ordered elements of Fy as 2% ..., 2%~ Since
all the values G(z°),...,G(2*"7!) of function G are known, we can represent values of
the constructed function F' only through unknown coefficients «;; and some constant
terms. Since F' is an APN function, for a nonzero a all sums F(x) + F(z + a) and
F(y) + F(y + a), where © # y and = # y + a, should be pairwise different. This fact
applies special restrictions on coefficients «; . For the convenient representation of these
restrictions further we consider the following matrix approach that was proposed by Beth
and Ding in [1].

Each quadratic vectorial function GG in n variables can be considered as a symmetric
matrix G = (g;;), where each element g;; € F} is a vector of coefficients corresponding to
term x;x; in the algebraic normal form of G and all diagonal elements g;; are null.

Sequences and Their Applications (SETA) 2020
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Example 2. For n = 3 let us consider function G = (g1, ¢2,93) = (129, X223, T123)
1 0 0

= |0| -x1x2+ |0] - 2123+ 1] - x223.
0 1 0

Then the corresponding matrix G is the following:

(000) (100) (001)
G = |(100) (000) (010)
(001) (010) (000)

It is necessary to mention that these matrices also were used in [10] and [9] to construct
and classify a lot of new quadratic APN functions over finite fields. Using these matrices
the APN property can be formulated in the following way:

Proposition 3. Let G be the matriz that corresponds to quadratic vectorial function G.
Then function G is APN if and only if x - (G - a) # 0 for all x # a, where a,xz € Fy and

a# 0.

In terms of matrices the construction from (1) can be considered as an extension of a
given ¢ with an extra bit that represents g,1 in every element and an extra pair of row
and column that represents a set of new terms x;x,1.

Example 4. For the considered APN function G = (g1, g2,93) = (172, T273, T173) We
choose null g, and construct APN function F' = (f, fa, f3, f4) in 4 variables, where:

i =91

Jo = go + w324;

J3 = g3 + o4 + T37y4;

Ji = 1124 + T374.

Then the corresponding matrix F is the following:

(0000) (1000) (0010) (0001)

& _ |(1000) (0000) (0100) (0010)
~ |(0010) (0100) (0000) (0111)
(0001) (0010) (0111) (0000)

Consider a quadratic APN function GG and the corresponding n X n matrix G. Denote
the vector of nonzero coefficients as o = (aq,...,qa,). Let us fix g,.; and construct
(n+1) x (n + 1) matrix F by adding (ay, ..., ay,,0) as the last column and the last row
and adding new bit to every element according to the choice of g,,1. Let us denote as G’
the submatrix (f;;) of F, such that 7,5 < n+ 1. Let (X) denote the linear span of X and
F' be the quadratic vectorial that is corresponded with the constructed matrix F

Theorem 5. A function F is APN if and only if o - a’ does not belong to (G' - a') for all
a eFy, a #0.
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Let us note that Theorem 5 shows how to obtain restrictions on new coefficients in
the convenient form.
For the given k£ € N let us consider the following sets:

Si,k: = {CYZ' +v | RS <g/ . (ei + ek))};
S@j’k = {Oéi + Q; + v | NS <Q” . (ei + € + Gk)>};

51727.,,7]€_17k = {051 +oao+ ... +ap_1+v | v E <g/ . (61 + e+ ... +ep 1+ ek))},

where eq, ..., e, is the standard basis in F§. Let us call a vector o = (ay, ..., ay),
where a; € Fytt, admissible for matrix G’ if it satisfies the condition in Theorem 5. We
call a sequence (af, ..., a}), where af € Fi™ to be k-admissible for some k < n, if vector
o =(af,...,a;5,0,...,0) of length n is admissible for all nonzero o’ = (a},...,al,) € F}
such that aj,, = 0,...,a, = 0. An n-admissible sequence can be considered as an

admissible vector of length n. Consider an APN function G in n variables and a fixed
In+1-

Proposition 6. The number of quadratic APN functions that can be obtained from func-
tion G wusing the construction from (1) is equal to the number of admissible vectors
a=(aq,...,ap) for matriz G'.

It can be seen that there are 2"*1— | (G’ - (e;)) | vectors ay such that (aj) is 1-
admissible. The following proposition shows how to obtain the number of admissible
vectors:

Proposition 7. Let (a1, a9,...,a5_1) be the (k — 1)-admissible sequence for some k <
n+ 1. Then there exist

k-1
2" — | (G (ex)) U {U SikyU{ U SijrtU...US12 k-1
i=1

1<i<j<k,
vectors oy, such that sequence (o, v, . .., g 1, 04) is k-admissible.

Also, our method can be extended to the case when G is not an APN function, but ANF
of G and g, together contain all possible quadratic terms. The following proposition
describes the necessary condition on the choice of such functions.

Proposition 8. Let G be a vectorial function in n variables and F be an APN function
in n + 1 variables that it is obtained from G using construction (1). Then Ag < 4.

For example, for differential 4-uniform function G = (g1, g2, 93, g4, g5), where:
g1 = T1T2 + T3T5 + T4l5;

g2 = T1T3 + T4Ts;

g3 = ToZ3 + T1%4 + T3X5 + T4Ts5;

g4 = ToTy4 + T1T5 + T4X5;

g5 = X3T4 + ToT5 + T4l5.
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and gg contains all the terms z;z;, where ¢ < j < n, we obtained 13 CCZ classes among
constructed functions. Let us recall that there exist only 13 CCZ classes of quadratic APN
functions in dimension 6.

It can be seen that every quadratic APN function can be obtained using construction
from(1). It is worth mentioning that when n = 3,4 and 5 for APN functions that are CCZ
classes representatives we obtained all the possible classes of quadratic APN functions for
4,5 and 6 variables from the classification [2] and large variety of classes for constructing
from 6 to 7 variables. )

Note that for the given APN function G in n variables we have 97" possibilities to
choose g,.1. It is interesting that the choice of g,.1 affects the capability to obtain APN
function F'in n + 1 variables, the number of such constructed functions and the variety
of different CCZ-classes among constructed classes. For example, when n = 5 and g,y is
null both quadratic CCZ-representatives give us the only one CCZ-class for 6 variables. At
the same time for another choices of g, these functions give 13 CCZ-classes of quadratic
APN functions in 6 variables. Unfortunately, for n > 7 it becomes computationally harder
to choose the proper initial function and g, and to obtain a large amount of generated
functions. It seems that construction from (1) is not so efficient on large dimensions.

3 On cyclic construction of quadratic APN functions

Let us introduce another approach for constructing quadratic APN functions using matrix
representation from previous section. Let eq,..., e, be the standard basis in Fj. For the
given n consider the following matrix with elements from [F7:

0 e1 €s €3 ... €p_o  En_1
el 0 es e4 N | en
€9 €3 0 €5 ce €n t3,n
T = €3 €4 €5 0 e t47n_1 t47n ,
€n—2 €En—1 €n tn71,4 <. 0 tnfl,n
_enfl €n tn,3 tn,4 S tn,nfl 0 |

where ¢; ; = t;; and ¢; ; denote some unknown elements in 5.

Our aim is to find values of missed matrix elements such that matrix 7 represents
APN function. We can apply the approach with restrictions from the previous section.
Without loss of generality let us consider the first unknown element of matrix 7 that is
t3n. According to Theorem 5 the last column of 7 should satisfy (e,—1, €n,t30,...,0)-a" ¢
(T'-d'), where a’ € Fy™', @’ # 0 and T' = T \ (€n—1,€n,t3,...,0). If we consider all
a = al,...,al,_, such that a§ = 1 and a; = 0, if i > 3, we obtain restrictions on the
value of t3,, that are independent from any other unknown element of 7. Repeating this
procedure step by step for every new element after fixing values of previous variables ¢, ;
allows us to obtain all possible fillings for the given matrix 7.

For n = 3,4 and 5 this construction covered all quadratic CCZ-classes. For n = 6 it
covered 11 out of 13 classes. Unfortunately, for larger dimensions the number of generated
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functions dropped dramatically and the construction covers only 7 classes for n = 7 and
only one class for n = 8. As a consequence, we consider the following generalization of
this construction.

Let 7 be the same matrix that contains k unknown elements. Consider the diagonal
that contains all elements e, in 7. It is easy to see that we can remove any element e,
from this diagonal and apply the above procedure to the new matrix with £+ 1 unknown
elements. Moreover, we can remove any number of elements e,, from this diagonal and the
more elements are deleted the more APN functions can be constructed using this matrix.

For n = 6 when we removed one element e,, from the diagonal in 7 the new matrix
had already covered all 13 CCZ classes of quadratic APN functions. For n = 7 and the
matrix that has no elements e, on the diagonal we generated 2341888 quadratic APN
functions, the variety of CCZ classes is still being checking at the moment as well as
generating quadratic APN functions for n = 8 is in progress. It is interesting to note that
such construction generates, in some sense, lexicographically smallest quadratic functions.

4 The differential uniformity of APN functions quadratic parts
and stacked APN functions

Let F' be a vectorial Boolean function of algebraic degree d. Then it can be represented as
sum F = FO 4+ FO L F@ 4 4+ F@ where each function FU) contains only monomials
of algebraic degree j and F© is a constant term. We observed that if F is an APN
function then its quadratic part #® has a low differential uniformity.

Conjecture 9. Let ' be an APN function in n variables, where 4 < n < 7. Then
Ape < 4.

The conjecture is true for n = 4. When n = 8,9 there were found APN functions
F (e.g. Kasami power functions for n = 8 and Inverse function for n = 9) such that
Ape = 8. Nevertheless, for these large dimensions the differential uniformity of quadratic
parts is still quite low. Further we consider only functions without affine terms. Let F'
be an APN function in n variables, where F = F® 4+ FG) 4 4 F@),

Proposition 10. If H = F + F® = (0,...,0,h;,0,...,0) for some 1 < j < n, then
Ape < 4.

For n = 4,6 there exist cubic APN functions such that H = F + F?) = (0,...,0, hj,
0,...,0) for some 1 < j < n. Let us note that these simple results allow us to use
quadratic APN or differential 4-uniform functions to construct functions of higher degrees,
particularly, cubic APN functions.

The observation on low differential uniformity of an APN function quadratic part
motivated us to introduce a new subclass of APN functions.

Definition 11. Let F = F® + ...+ F@ be an APN function of algebraic degree d. If all
functions £+ F@, F4 F@  pd=1) p 4 pd 4 pld=1) 4+ F3 are APN functions
then F'is called a stacked APN function.
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Let us describe one of the possible approaches to constructing stacked APN functions
of degree 3. Let H be a cubic vectorial function in n variables with no affine or quadratic
terms. Then H = Z”k @ik T;T;xk, Where 1 <1 < j < k < n and a;;; € Fy. Let a;,j,x,
be an arbitrary nonzero coefficient in the ANF of H. Let us call H a cubic shift if for all
1 <1< j <k < nvector agy is null or equal to a; k. For n = 4,5 we implemented
the search of cubic APN functions F = F® + F®) such that F® is some cubic part and
F®) is an APN quadratic function, that is constructed using the cyclic matrix 7 from the
previous section. For n = 6 we implemented the similar search, but F®) was a cubic shift
since it is computationally hard to search through all the possible cubic parts. We have
found a large amount of cubic stacked APN functions for n = 4,5,6. Some examples are
provided below:

Table 1: Examples of stacked cubic APN functions (both F and F® are APN).

F 00 0 1 0 2 4 7 0 4 6 3 8 14 11 12
F@ 0o 0o o 1 0 2 4 7 0 4 6 3 8 14 10 13

F 00 0 1 0 2 4 7 0 4 10 15 19 21 28 27
0 8 16 25 11 1 29 22 15 3 17 28 31 17 6 9
F 00 0 1 0 2 4 7 0 4 10 15 19 21 29 26
0 8 16 25 11 1 31 20 15 3 21 24 23 25 9 6
F 00 0 1 0 2 4 130 4 8 7 16 22 28 27
0 8 16 19 9 3 29 22 45 33 53 56 52 58 40 45
0 16 60 45 26 8 34 59 55 35 3 28 61 43 13 26
5 29 41 58 22 12 62 37 31 3 59 38 28 2 60 41
F o000 0 1 0 2 4 7 0 4 8 13 16 22 28 27
0 8 16 25 9 3 29 22 45 33 53 56 52 58 40 39
0 16 60 45 26 8 34 49 55 35 3 22 61 43 13 26
5 29 41 48 22 12 62 37 31 3 59 38 28 2 60 35

It is worth mentioning that we have found more than 70 000 cubic stacked APN
functions when n = 6 and all these functions belong to the same CCZ-class that is the
only known class that does not contain quadratic functions (the class number 13 in the
list from [2]).

There have been left a few open questions:

1. How to choose properly the initial function G' in secondary approach? It seems
that for most APN functions in n variables it is possible to find corresponding APN
functions in n + 1 variables for some g,,.1, but we have found one counterexample
when n = 6.

2. The same question arised for the choice of g, 1, since it greatly affects the outcome
of the search.
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3. It is possible to extend the above idea of restrictions on larger algebraic degree cases,
in particular, on cubic case. How to find a convenient systematic way of obtaining
these restrictions (as it was made with matrices in quadratic case)?

4. Conjecture 9 can be extended for larger dimensions, i.e. Apz <8 when8 <n < N
for some N;. Can we estimate value N;?

5. Is there exist stacked APN functions of degree more than 37
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Abstract

Bent functions of the form Fy — Z,, where ¢ > 2 is a positive integer, are known
as generalized bent (ghent) functions (K.-U Schmidt, 2006). There is a class of gbent
functions for which it is possible to define a dual gbent function, gbent functions
that possess this property are called regular. A regular ghent function is said to be
self-dual if it coincides with its dual. In this paper we explore self-dual generalized
bent functions. We give necessary and sufficient conditions for the self-duality of
Maiorana—McFarland gbent functions, consider self-dual bent functions obtained by
the direct sum of generalized Boolean functions. We provide a sufficient condition
for a gbent function from Dillon’s Partial Spreads to be self-dual. Two iterative
constructions based on the generalization of iterative constructions of Boolean self-
dual bent functions are presented. We prove that the set of sign functions of self-
dual gbent functions in n variables has dimension 2"~!. We find all self-dual gbent
functions symmetric with respect to two variables and prove that self-dual gbent
function can not be affine. Symmetries that preserve self-duality are also discussed.

1 Introduction

Boolean bent functions were introduced by [19], they have applications in cryptograohy
and coding theory. In 2000, Wada [28] established a connection between bent functions
and binary constant-amplitude codewords.

Having applications of functions from F} to Z, in code-division multiple access (CDMA)
systems, K.-U Schmidt introduced in [20] the bentness of a generalized Boolean function
and also studied quaternary generalized bent (gbent) functions (see also paper [21]). Note
that generalized Boolean functions were also studied in a perspective of obtaining linear
codes, see [15]. In recent years generalized bent functions obtained much attention. In

*The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-
2019-1613 with the Ministry of Science and Higher Education of the Russian Federation and Laboratory
of Cryptography JetBrains Research.
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papers [13, 23] several constructions and properties of generalized bent functions were
obtained. The question of the characterization of generalized bent functions was recently
studied in [7, 14, 24].

Self-dual bent functions were explored by C. Carlet et al. in 2010 [3], main construc-
tions and properties were given and the classification for small number of variables was
provided. Next steps for the classification were made in [5], quadratic self-dual bent func-
tions were characterized in [9]. Other constructions, metrical properties and groups of
automorphisms of self-dual bent functions were studied in [10, 11, 12]. In 2018 L. Sok.
et al. in paper [22] studied quaternary self-dual bent functions from the viewpoints of
existence, construction, and symmetry. In current work we investigate constructions,
symmetries and other properties of self-dual generalized bent functions Fy — Z,, when ¢
is even.

A survey on different generalizations of bent functions can be found in [25].

2 Notation

Let F be a set of binary vectors of length n. For z,y € F} denote (x,y) = € z;y;, where
i=1
the sign @ denotes a sum modulo 2.

A generalized Boolean function f in n variables is any map from Fj to Z,, the integers
modulo ¢. The set of generalized Boolean functions in n variables is denoted by GF?%. Let
w = e¥™/1. A sign function of f € GF? is a complex valued function w’, we will also refer
to it as to a complex vector (a)fo,wfl, ...,wa”—l) of length 2", where (fo, fi,..., for_1) is a
vector of values of the function f.

The Hamming weight wty (x) of the vector x € F} is the number of nonzero coordinates
of x. The Hamming distance disty(f, g) between generalized Boolean functions f, g in n
variables is the cardinality of the set {x € Fy|f(z) # g(x)}. The Lee weight of the element
x € Zy is wt(x) = min {x,q — x}. The Lee distance dist;(f, g) between f,g € GFI is

disty(f, g) = Z wtr (6(z)) ,

z€FY

where § € GF? and 6(x) = f(z) + (¢ — 1)g(z) for any x € F}. For Boolean case ¢ = 2
the Hamming distance coincides with the Lee distance.
The (generalized) Walsh-Hadamard transform of f € GFI is the complex valued

function:
Hy(y) = 3 @1,
zelFy

A generalized Boolean function f in n variables is said to be generalized bent (gbent)
if
[Hy(y)| =27,
for all y € F% [20]. If there exists such f € GF that H¢(y) = wf®2n/2 for any y € F7, the
ghent function f is said to be reqular and f is called its dual. Note that f is generalized
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bent as well. A regular gbent function f is said to be self-dual if f = fv, and anti-self-dual
if f = f+ 2. Consequently, it is the case only for even ¢q. So throughout this paper we
assume that ¢ is a natural even number.

3 Constructions

3.1 Direct sum

Suppose n = ny + ng + --- + n, and pr < q, where ng, pi are positive integers for k =
1,2,...,7. Let f € GFZ, consider ghent functions f, € GFL* k =1,2,...,r. The function

F@) = i (@) + o (1) + - (1),

where 2% € F3* and o = (¢, 2®, ..., 2") € F}, is a direct sum of generalized Boolean
functions fi. Gbent functions obtained by a direct sum of generalized Boolean functions
were studied in paper [8], it was proved that function f is gbent if and only if all f; are
ghent functions. Here we consider self-dual bent functions obtained by this construction.

Proposition 1. Assume all numbers py, are even and f, € GFP* are gbent functions such
that fr = fr + cx (px/2), where ¢ € Fy, k = 1,2,...,r. If there is an even number of
nonzero coefficients cy, the function f is a self-dual gbent function in n variables.

3.2 Maiorana—McFarland class

Bent functions in 2k variables which have a representation

flz,y) = (z,7(y)) ® 9(y),

where z,y € F&%, 7 : FX — F% is a permutation and g is a Boolean function in k variables,
form the well known Maiorana—McFarland class of bent functions. It is known [2] that a
dual of a Maiorana—McFarland bent function f(z,y) is equal to

flay) = (), y) &g (v ().

A generalization of this construction for the case ¢ = 4 was given by Schmidt in [20].
In [23] this construction was given for any even ¢, thus, forming the following construction

fla,y) = Sla () + g(y).

where x,y € F4, m: F§ — F} is a permutation and g is a generalized Boolean function in
k variables. Its dual is

Jlay) = S @).y) +9 (n (@)

In the article [3] necessary and sufficient conditions of (anti-)self-duality of Maiorana—
McFarland bent functions, denoted by SB},(n) (SBy,(n)), were given. In [22] quaternary
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self-dual Maiorana—McFarland bent functions were studied and necessary and sufficient
conditions of self-duality were obtained for them.

In the current work we generalize these results for any even ¢. Denote the sets of
(anti-)self-dual generalized Maiorana-McFarland bent functions by SB},(n) (SByq(n))

Theorem 2. A generalized Maiorana—McFarland bent function

flx,y) = % (@, 7(y)) + g(y), =,y € Fy,

is (anti-)self-dual bent if and only if for any y € IF;/Q

") =Lob), g) =70y +d

where L € Op0,b € IF;L/Q, wt (b) is even (odd), d € Z,.

It follows that the number of such functions is a function of ¢ and the cardinality of
the orthogonal group.

Corollary 3. It holds

}SB;M(;(TL)‘ = ‘SB;Mq(n)| =q- on/2-1 |O (n/2,Fs)].

3.3 Dillon functions type

In [13] an explicit representation of functions in a generalization of Dillon’s PS,, class to
gbent functions with ¢ = 2¥ was presented. By comparing the function from PS,, in a
bivariate form with its dual (that was also given in [13]) we obtain the following result.

Theorem 4. Assume G;, j =0,1,...,k —1, be balanced Boolean functions in m variables
5 296,()
with G;(0) =0 and 3 w’=° = 0. Then, if G;(u) = G;(1/u) for any u € Fom (with
teFom

the convention 1/0 = 0), then the function f : Fom X Fom — Zor given by

k—1
fla,y) =) 2G;(x/y)
§=0
18 self-dual gbent in 2m variables.

3.4 Iterative construction

Let fo, f1, f2, f3 be Boolean functions in n variables. Consider a Boolean function g in
n + 2 variables which is defined as

9(007'17) = fO('x)7 9(01,[L’) = fl(x)’ g(lO,ZL‘) = fQ(x)v g(ll,l‘) = f3(:L‘), LS ]Fg
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It is known (Preneel et al., 1991; see also [1, 26]) that under condition that all fo, f1, f2, f3
are Boolean bent functions in n variables, the mentioned function ¢ is a bent function in
n + 2 variables if and only if L

fo® i@ f2® f3 =1,
that gives the construction of a bent function in n+ 2 variables through the concatenation
of vectors of values of four bent functions in n variables [16].

Following N. Tokareva [26], we will refer to Boolean bent functions obtained by this
construction as bent iterative functions (BZ) the set of such bent functions in n variables is
denoted by BZ,,. A construction of generalized bent functions in n + 2 variables obtained
by concatenation of four generalized Boolean functions on n variables was studied in [17].

Bent iterative constructions of self-dual Boolean bent functions in n+2 variables, based
on concatenation of 4 Boolean bent functions in n variables, were presented in [3, 11].
In current work we give two constructions of generalized bent iterative functions that
generalize the constructions for Boolean case:

Theorem 5. 1) Let f be a reqular gbent function in n variables, then the sign function
<F, F.F, —F> ,
18 the sign function of a self-dual gbent function in n + 2 variables;

2) Let [ be a self-dual gbent function in n variables with the sign function F, and g
be an anti-self-dual gbent function in n variables with the sign function G, then the
sign function

(F7G7_G7F)7

15 the sign function of a gbent function in n + 2 variables.

4 Sign functions of (anti-)self-dual gbent functions

Let I, be the identity matrix of size n and H,, = H{" be the n-fold tensor product of the
matrix H; with itself, where
1 1
H, = (1 _1) |

It is known the Hadamard property of this matrix
H,H' = 2"y,

where H! is transpose of H, (it holds H! = H,, by symmetricity of H,,).
Recall an orthogonal decomposition of R?" in eigenspaces of H,, from [3] (Lemma 5.2):

R*" = Ker (H, + 2"*I5n) & Ker (H, — 2"?In)
where the symbol @ denotes a direct sum of subspaces. Consider the same decomposition

C?*" = Ker (H, + 2" Ipn) @ Ker (H, — 2"*Iyn)
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for a complex space C%".

As for the Boolean case (see [12]), we note that sign function of any self-dual gbent
function is the eigenvector of H,, attached to the eigenvalue 1, that is an element from
the subspace Ker (H,, — In) = Ker (Hn — 2”/2[2n). The same holds for a sign func-
tion of any anti-self-dual gbent function, which obviously is an eigenvector of H,, at-
tached to the eigenvalue (—1), that is an element from the subspace Ker (H,, + Ilon) =
Ker (H, + 2"2I5).

It is known that

dim (Ker (H,, + Ion)) = dim (Ker (H,, — In)) = 2",

where dim (V) is the dimension of the subspace V' C R2?". Moreover, since H,, is symmetric
(Hermitian), the subspaces Ker (H,, + Isn) and Ker (H,, — I3») are mutually orthogonal.

In [11] it was proved that provided n > 4, the linear span of sign functions of self-dual
as we;; as anti-self-dual Boolean bent functions in n variables has dimension 2"~ !. The
same result can be also given for gbent functions:

Theorem 6. Let n > 4, then the linear span of sign functions of (anti-)self-dual gbent
functions in n variables has dimension 2" 1.

5 Self-dual gbent functions symmetric with respect to two vari-
ables

A generalized Boolean function h € GF! , is symmetric with respect to two variables y
and z if and only if there exist functions f, g, s € GFZ such that

h(z,y,2) = f(x) + (y © 2)g(z) + yzs(x), y,z € Fy,x € Fy. (1)

In paper [23] it was proved that a function of such form is ghent if and only if the
functions f, f 4+ g are gbent and s(z) = ¢/2,z € Fy. We study the conditions for self-
duality of functions of such form.

Theorem 7. Let h be a gbent function of the form (1). Then h is self-dual if and only
if fis gbent, g = f+ (q—1)f, and s(z) = q/2,x € F}.

6 Affinity of self-dual gbent function

In paper [17] for the case when ¢ is divisible by 4, necessary and sufficient conditions for
the bentness of generalized Boolean functions of the form

flx) = Z Aii + Ao,
i=1

where \g, A1, ..., A, € Z,, were obtained. Functions from this class are referred to as affine
functions.
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It is well known that Boolean bent function and, as a consequence, self-dual Boolean
bent function can not be affine. The next result shows non-existence of self-dual gbhent
functions in the class of affine functions.

Theorem 8. There are no self-dual generalized bent functions in n variables of the form
f(a:) = Z )\Z.TZ + )\0,
i=1

where Ao, A1, ..., Ay € Zj.

7 Symmetries

Denote, according to [6], the orthogonal group of index n over the field Fy as
O, ={LeGL(n,F>)|LL" = 1I,},

where LT denotes the transpose of L and I, is an identical matrix of order n over the
field TFs.
In paper [5] (see also [3]) it was shown that the mapping

f@) — f(L(z®c) ®(c,x) Dd,

where L € O, ¢ € Fy, wt(c) is even, d € Fy, preserves self-duality of a bent function.
The group which consists of mappings of such form is called an extended orthogonal group
and denoted by O,, [4, 5]. It is known that this group is a subgroup of GL (n + 2, ) [5].

In paper [12] known results were generalized within isometric mappings from the set
of all mappings of all Boolean functions in n > 4 variables into itself, which preserve the
Hamming distance. Namely it was proved the necessity of such a form of mappings for
prserving of (anti-)self-duality.

In current work we consider the mappings of the set of all generalized Boolean functions
in n variables to itself of the form

f@) — f(n(z)) + g(x),
where 7 is a permutation on the set F} and g € GF,. It is clear that such mappings
preserve both Hamming and Lee distances between generalized Boolean functions.

The following result provides the construction of mappings of such form that preserves
(anti-)self-duality of a Boolean function.

Theorem 9. The mapping of the set of all generalized Boolean functions in n variables
to itself of the form

flx) — f(m(x)) + g(x),
with

and

9(@) = Jea) +d.

where L € O, ¢ € F}, wt(c) is even, d € Fy, preserves (anti-)self-duality of a gbent
function.
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Metrical properties of the set of bent functions in
view of duality

Aleksandr Kutsenko and Natalia Tokareva

Abstract

In this work ! we give a review of metrical properties of the entire set of bent
functions and its significant subclasses of self-dual and anti-self-dual bent functions.
We give results for iterative contruction of bent functions in n -+ 2 variables based on
the concatention of four bent functions and consider related open problem proposed
by one of the authors. Criterion of self-duality for bent iterative functions and corol-
laries on sign functions and constructions of self-dual bent functions are discussed.
It is explored that the pair of sets of bent functions and affine functions as well as
a pair of sets of self-dual and anti-self-dual bent functions in n > 4 variables is a
pair of mutually maximally distant sets that implies metrical duality. The solution
to the problems of preserving bentness and anti-self-duality within automorphisms
of the set of all Boolean functions is considered.

Keywords: Boolean bent function, self-dual bent function, Hamming distance, metrical
regularity, automorphism group, iterative construction

1 Introduction

How much do we know about some cryptographic objects? One way to
measure it is to describe what we can do with them. Otherwise to characterize
groups of automorphisms of these objects — separately for each object or
together while they form some special class. The question about the group of
automorphisms of a set in the Boolean cube necessarily leads us to metrical
properties of this set. That is why we are very interested in metrical properties
of distinct cryptographic Boolean functions.

The term “bent function” was introduced by Oscar Rothaus in
the 1960s [28|. It is known [36|, that at the same time Boolean functions
with maximal nonlinearity were also studied in the Soviet Union. The term

IThe work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-
1613 with the Ministry of Science and Higher Education of the Russian Federation and Laboratory of
Cryptography JetBrains Research.
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mainimal function, which is actually a counterpart of a bent function, was
proposed by the Soviet scientists Eliseev and Stepchenkov in 1962. Bent
functions have connections with such combinatorial objects as Hadamard
matrices and difference sets. Since bent functions have maximum Hamming
distance to linear structures and affine functions they deserve attention for
practical applications in symmetric cryptography, in particular, for block and
stream ciphers. We refer to the survey [5] and monographies of Mesnager [25]
and Tokareva [36] for more information concerning known results and open
problems related to bent functions. Results regarding the study of metrical
properties of the set of bent functions one can find in article [16].

In this paper we study the class of bent function B, and its important
subclasses — self-dual bent functions SB*(n) (i.e. functions such that f = f)
and anti-self-dual bent functions SB™(n) (i.e. functions such that f © 1 =
f), where f is the dual of f. We suppose that the keys to the nontrivial
and important properties of the class of bent functions are in understanding
how does the duality mapping f — fvoperate with bent functions. Recall

that f: f for every bent function f. It is important to note that the duality
mapping is the unigue known isometric mapping of the bent functions into
themselves that can not be extended to a typical isometry of the whole set
of all Boolean functions that preserves bent functions.

On other hand, the essence of bent functions is expressed in their met-
rical properties, namely in maximizing distances between them and affine
functions. Note that this very idea in more general form is realized in the
concept of metrical complement and metrically regular sets. Recall that X is
the metrical complement of the set of functions X if it contains all Boolean
functions that are on the maximal possible distance from X. The set is met-

rically regular, if X = X. There is a some similarity to the self-duality of
bent functions, is not it?

Our attention is drawn to automorphism groups of the sets B,, A,,
SB*(n), SB™(n) and their metrical properties. Previously, we established
that the set of all bent functions B, and the set of all affine functions

—_ o~

A, form a pair of metrically regular sets, i.e. B, = A, = B,. Now we
prove the same fact for the classes of self-dual and anti-self-dual func-
tions: they form another such pair of metrically complement functions,

—
—_—

i.e. SBT(n) = SB™(n) = SB™(n). In both cases for elements in a pair of met-
rically regular sets we prove the coincidence of automorphism groups. Thus,
Aut (B,) = Aut (A,) and Aut (SB*(n)) = Aut (SB™(n)). Some other cu-

rious properties of bent functions related to their special constructions are
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discussed in the paper.

The work has the following structure: notation and definitions are in the
Section 2. In Section 3 the duality of a bent function is described, including
some its important properties and relevant hypothesis (Section 3.1). Some
general and metrical properties of the set of bent functions which coincide
with their duals, namely self-dual bent functions, are given in Section 3.2.
In Section 4 we discuss the iterative construction of bent function in n + 2
variables based on the concatenation of four bent functions in n variables.
The lower bounds on its cardinality and open problem relevant for the set
of bent function are in Section 4.1. Criterion of self-duality for bent iterative
functions and its corollaries for sign functions together with constructions of
self-dual bent functions are discussed in Sections 4.2 and 4.3. In Section 5 the
metrical complement of the set of bent functions is studied (Section 5.2) and
the results regarding metrical regularity of the set of bent functions and the
set of affine functions are given. Metrical complement of the set of (anti-)self-
dual bent functions is in Section 5.3. In Section 6 groups of automorphisms
of considered sets are studied. The group of automorphisms of the set of bent
functions is characterized in Section 6.3 while the (anti-)self-dual case is in
Section 6.5. In Section 6.4 we discuss automorphisms of the set of all Boolean
functions in n variables which define bijections between sets of self-dual and
anti-self-dual bent functions. In Section 6.6 we state the relation between the
results from Section 6.5 and preserving of the Rayleigh quotient of a Boolean
function.

2 Notation

Let F} be a space of binary vectors of length n. Denote, following [12],
the orthogonal group of index n over the field Fs as

O,={LeGL(nF)|LL" =1,},

where LT denotes the transpose of L and I, is an identical matrix of order
n over the field Fs.

A Boolean function f in n variables is a map from FJ to Fo. Its sign
function is F(x) = (=1)/®) 2 € F}. We will also refer to a sign function as
to a vector from the set {£1}*":

F = (-1)f = (-, (—)f, . (<)) € {211
where (fo, f1,..., fon_1) € F3 is a truth-table representation of f with ar-

guments given in the lexicographic order. The set of Boolean functions in n
variables is denoted by F,.
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The algebraic normal form (ANF, Zhegalkin polynomial) of a Boolean
function f € F,, is defined to be

_ 11,02 1
!f($1,$2,“.ﬁﬂn)—— 6}9 Qiyig...ip L1 Lo Ty’

(il,ig ..... Zn)EFgL

where a, € Fy for any z € F} (with the convention 0° = 1). The algebraic
degree deg(f) of a Boolean function f is the maximal degree of monomials
which occur in its algebraic normal form with nonzero coefficients.

The Hamming weight wt(x) of the vector € F} is the number of nonzero
coordinates of x. The Hamming weight wt(f) of the function f € F, is
the Hamming weight of its vector of values. The sign @ denotes a sum
modulo 2. The Hamming distance dist(f, g) between Boolean functions f, g
in n variables is a cardinality of the set {z € F§ : f(x) ® g(z) = 1}. For

n

z,y € F} denote (x,y) = € z;y;. Boolean functions in n variables of the
i=1

form f(x) = (a,z) ® ap,z € Fj, where ay € Fy,a € Fj, are called affine

functions. The set of affine functions in n variables is denoted by A,,.

The Walsh-Hadamard transform (WHT) of a Boolean function f in n
variables is an integer valued function Wy : 'y — Z, defined as

Wily) = Y (-0t y e Ty,
zeFy
A Boolean function f in an even number n of variables is called bent if

(Wi (y)| = 2"/2,

for all y € Fy. The set of all bent functions in n variables is denoted by B,,.

3 The dual of a bent function

From the definition of a bent function it follows that for any y € Fj we
have

Wily) = (-2
for some j7 € F,. The Boolean function fdeﬁned above is called the dual
function of the bent function f. Thus, for any bent function in n variables
its dual Boolean function is uniquely defined. The duality of bent functions
was introduced by Dillon [10].
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3.1 Properties
Some basic known properties of dual functions are the following [5]:
— Every dual function is a bent function;
— If fis dual to f and }vis dual to ]?, then ?: f:

— The mapping f — }vwhich acts on the set of bent functions, preserves
the Hamming distance.

There is the following connection between the algebraic degrees of a bent
function and its dual [13]:

o2ty > 12 )
S deg(ﬂ—l '

Some results obtained for dual functions can be used in proving the results

concerning bent functions, in particular, the connection between algebraic
normal form (ANF) coeflicients of a bent function and its dual, see [7]:

Zf 2wt 2n/2 1+2wt —n/2 Z f

EST] r<ydl

One of the most important problem in bent functions is to find the num-
ber of them. A new approach to this problem was introduced in [32], see
Section 4.1, and the following hypothesis was formulated.

Hypothesis (Tokareva, 2011): any Boolean function in n variables of
degree not more than n/2 can be represented as the sum of two bent functions
in n variables, where n > 2 1s an even number.

The review of partial results regarding this problem and also in favour of
the Hypothesis one can find in [34]. It was also proved in |35] that

Theorem 1. A bent function in n > 4 wvariables can be represented as the
sum of two bent functions in n variables if and only if its dual bent function
does.

So, it follows that the mentioned Hypothesis with the decomposition
problem, see Section 4.1, can not be considered separately for a bent function
and its dual.

It is worth noting that this hypothesis is a counterpart of the Goldbach’s
conjecture in number theory unsolved since 1742: any even number n > 4
can be represented as the sum of two prime numbers.
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[sometric mappings of the set of all Boolean functions in n variables to
itself which preserve bentness and the Hamming distance between every bent
function and its dual were characterized in [19], namely it was proved that

Theorem 2. An isometric mapping ¢ of the set of all Boolean functions in
n variables into itself preserves bentness and the Hamming distance between
every bent function and its dual if and only if  has form

fx) — f(L(z@c)@lcr)@d el

for some L € O, c € Fy, wt(c) is even, d € Fs.

3.2 Self-duality

If a bent function f coincides with its dual it is said to be self-dual, that
is f = f. A bent function which coincides with the negation of its dual is
called an anti-self-dual, that is f = f @ 1. The set of (anti-)self-dual bent
functions in n variables, according to [14], is denoted by SB*(n) (SB™(n)).

Self-dual bent functions were explored in paper of Carlet et. al. [4] in 2010,
where some important properties and constructions were given. All equiv-
alence classes of self-dual bent functions in 2, 4, and 6 variables and all
quadratic self-dual bent functions in 8 variables with respect to a restricted
form of an affine transformation

fx) — f(L(z®c) & cr)d, zely,

where L € O,,, ¢ € F}, wt(c) is even, d € Fy, which preserves self-duality were
also presented. Further, equivalence classes of cubic self-dual bent functions
in 8 variables with respect to the mentioned above restricted form of affine
transformation one can find in [11]. In [14] a classification of quadratic self-
dual bent functions was obtained. The upper bound for the cardinality of the
set of self-dual bent functions was given in [15]. In 20, 24] one can find new
constructions of self-dual bent functions. A connection of quaternary self-
dual bent functions and self-dual bent Boolean functions was shown in [29].
In [18] it was proved that for any d € {2,3,...,n/2} there exists a self-dual
bent function of algebraic degree d.

In papers [17, 18, 19] metrical properties of the sets of (anti-)self-dual
bent functions in n variables were studied. Below we briefly discuss some of
them.

Recall that bent functions in 2k variables which have a representation

flzy) = (z,7(y) ®g(y), =,y €,
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where 7 : F§ — F% is a permutation and g is a Boolean function in k variables,
form the well known Maiorana-McFarland class of bent functions [23|. Let
the denotion SB},(n) stands for the set of self-dual Maiorana-McFarland
bent functions and SB);(n) for the set of anti-self-dual ones. Necessary and
sufficient conditions of (anti-)self-duality of bent functions from Maiorana—
McFarland class are known from [4]. Regarding the spectrum of Hamming
distances in [17] the following result was proved.

Theorem 3. Let f, g € SB},(n) USBy,(n), then

1
dist(f, g) € {2"1, on—1 (1 + 2—> r=0,1,...,n/2 — 1} ,

Moreover, if either f,g € SBi(n) or f,g € SBy,(n), then all distances
except 2”1 are attainable, and for any pair f € SBy,(n) and g € SB},(n)
it holds dist(f,g) = 2" 1.

By analysis of the set of distances from Theorem 3 the minimal Hamming
distance between considered functions can be obtained:

Corollary 1. The minimal Hamming distance between (anti-)self-dual
Muaiorana—McFarland bent functions is equal to 272,

Moreover, since the minimal Hamming distance between quadratic
Boolean functions in n variables (which correspond to codewords of
the RM(2,n) code) is at least 2”2 [21], the following fact holds

Corollary 2. The minimal Hamming distance between quadratic bent func-
tions can be attained on (anti-)self-dual Maiorana—McFarland bent functions.

It is well known that the minimal Hamming distance between bent func-
tions in n variables is equal to 2"/2, see [16] for instance. In [18] it was proved
that this extremal value can be attained on (anti-)self-dual bent functions.

Theorem 4. Let n > 4, then the minimal Hamming distance between dis-
tinct (anti-)self-dual bent functions in n variables is equal to 2"/2,

4 TIterative construction BZ

Let fo, f1, f2, f3 be Boolean functions in n variables. Consider a Boolean
function g in n + 2 variables which is defined as

9(007x> — fO(x)7 g(Ol,l’) — fl(x)v
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9(107$) - f2(x)7 g(ll,ZL’) - f3($),
where x € F5.

It is known (Preneel et. al., 1991; see also [1, 32]) that under condition
fo, f1, f2, f3 € B, the mentioned function ¢ is a bent function in n + 2
variables if and only if

fo® i@ fa® f3=1,
that gives the construction of a bent function in n + 2 variables through the
concatenation of vectors of values of four bent functions in n variables [27].

Bent functions which are obtained by this construction, in accordance
with [32], are called bent iterative functions (BZ) and the set of such bent
functions in n variables is denoted by BZ,,.

In the article [6] the comparison of cardinalities of different known iter-
ative constructions of bent functions in n < 10 variables was presented and
the class BZ had the biggest cardinality among them.

According to [1] there exist bent functions from Maiorana—McFarland
class |23] and from the class PS (Partial Spreads) [10] that can not be rep-
resented as bent iterative functions. Also from paper [2] on nonnormal bent
functions it follows that there exist bent functions in BZ,, that are nonequiv-
alent to Maiorana—McFarland bent functions.

4.1 Lower bounds on the cardinality and related open problem

In paper [32] some possible ways of how to calculate the number of bent
iterative functions were shown.

Theorem 5. For any evenn > 4

\BZ,| = Z Z By2® f)N(Bu2® f)].
J'€Bn—z ["EB—2
Denote X,, = {f @ h|f,h € B,} and consider the system {C;: f € B,}
of its subsets defined as C'y = B,, @ f. So,

= J ¢
feBn
Let ¢ be an element of X,,. The number of subsets C'y that cover 1, according
to [32], is called multiplicity of ¢ and is denoted by m (¢/). One can notice
that if ¢ is covered by C} then it is covered by any set C, where f’ is
obtained from f by adding an affine function.
In [32] the exact number of bent iterative functions through the multi-
plicities was obtained.
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Theorem 6. For any even n > 2

BT, 12| = Z m’ ().

’QbECf

So, in order to evaluate |BZ, 2| (and then |B,,2|) we have to study the
set X,, and the distribution of multiplicities for its elements. Such analysis,
as shown in [32], gives the following lower bound.

Theorem 7. For any even n > 2

‘Bn+2‘4
| Xl

< [BZnsa| < [Bustal -

Thus for calculating the exact number of bent iterative functions one has
to study the structure of the set X,,. So, we come to a new problem statement.

Open problem: bent sum decomposition (Tokareva, 2011). What
Boolean functions can be represented as the sum of two bent functions in n
variables? How many such representations does a Boolean function admit?

The related Hypothesis was previuosly mentioned in the Section 3.1.

4.2 Self-dual bent iterative functions

The set of (anti-)self-dual bent functions from BZ,, is further denoted by
SBjz(n) (SBaz(n))-

In paper [18] the necessary and sufficient conditions of self-duality of bent
iterative functions were studied, namely the following result was obtained.

Theorem 8. Let g € BZ, o then g is self-dual if and only if there exists
such pair of functions g1, g2 € By, and a function h € F,, that:

= (g1 B g2) h B g1 = go,

fo=( )
f1=(91@gz)h€992=g1/5/h,
fo=(1®g)h® g @ h=nq,

fi= (@@ h@gnehdl=godhel

Remark 1. It can be proved that the function h is uniquely defined by a pair
of bent functions g1, g2, namely: h = g1 B g1 D g2 D go.

By considering constant function h one can immediately obtain two con-
structions of self-dual bent iterative functions.
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Corollary 3. Functions

f(raea) = @) (F@) & f@) @ f2) & npe,

(i y2,) = (1 @ y2) (0(@) D w(z)) © () © aryr © aaye O y1ye,

where
Y1, Y2, 01,9 € Fo, 00 @ ap = 1, € Fy,

feB,peSBY(n),we SB (n),

are self-dual bent functions in n + 2 variables.

Remark 2. The first construction from those listed above (for f') was pre-
sented in [4] as an example of the construction which uses the indirect sum of
bent functions, see [3]. It is worth noting that the second construction (for f")
can also be obtained from indirect sum of bent functions.

Since these constructions do not intersect, the sum of their cardinalities
is a lower bound for the cardinality of the set of self-dual bent iterative
functions.

Corollary 4. It holds

B, o] + |SB*(n — 2)|* < |SBfiz(n)| < |Buoof*.

4.3 The dimension of linear span of sign functions of self-dual
bent functions

Let I,, be an identity matrix of size n and H,, = H{@” be the n-fold tensor
product of the matrix H; with itself, where

1 1
m=(1 ).

It is known the Hadamard property of this matrix
H,H' = 2" ).

Denote H,, = 27"/2H,,. In terms of sign functions the function f € F, is
bent if for its sign function F it holds H,F € {£1}*".

Recall that a non-zero vector v € C" is called an eigenvector of a square
n X n matrix A attached to the eigenvalue A € C if Av = Av. A linear span of
eigenvectors attached to the eigenvalue A is called an eigenspace associated
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with A. Consider a linear mapping ¢ : C" — C”" represented by a n x n
complex matrix A. A kernel of v is the set

Ker (¢) ={z € C"|Az =0¢€ C"},

where 0 is a zero element of the space C".

From the definition of self-duality it follows that sign function of any
self-dual bent function is the eigenvector of H,, attached to the eigenvalue 1,
that is an element from the subspace Ker (H,, — Io») = Ker (Hn — 2”/212n).
The same holds for a sign function of any anti-self-dual bent function, which
obviously is an eigenvector of H,, attached to the eigenvalue (—1), that is an
element from the subspace Ker (H,, + I»») = Ker (Hn - 2”/212n).

In [4] an orthogonal decomposition of R?" in eigenspaces of H,, was given:

R?" = Ker (Hn n 2"/212n) & Ker (Hn - 2"/212n) , (1)

where the symbol @ denotes a direct sum of subspaces.
It is known that

dim (Ker (Hn + 2"/2[2n)) — dim (Ker (Hn _ 2”/212n>) _ ol

where dim(V) is the dimension of the subspace V' C R?". Moreover, from
symmetricity of H,, it follows that the subspaces Ker (Hn —on/ 2]2n) and
Ker (Hn + 2”/212n) are mutually orthogonal.

In [18] it was proved that within the set of sign functions of self-dual
and anti-self-dual bent functions in n > 4 variables there exist basises of
the eigenspaces of the matrix H, attached to the eigenvalues 1 and (—1)
correspondingly.

Theorem 9. The linear span of sign functions of (anti-)self-dual bent func-
tions in n > 4 variables has dimension 2" 1.

It is worth notice that the desired basises consist of sign functions of
(anti-)self-dual bent iterative functions provided by two constructions from
Corollary 3.

5 Metrical complement and regularity

In this section we give results regarding notable metrical property of a
subset of Boolean cube called metrical regularity. The sets of affine Boolean
functions and bent functions possess it. The sets of self-dual and anti-self-
dual bent functions in n > 4 variables are also mutually maximaly distant.
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That implies metrical duality, in some sence, between the considered pairs of
subsets of Boolean functions.

Regarding that some essential and intriguing questions arise: for instance,
are there any pairs of metrically regular subsets inside the metrically regular
set of bent functions in n variables? If additionally, in order to exclude some
trivial cases we consider only the subsets which include functions together
with their negations, the maximal Hamming distance from the considered
sets is at most 2771, Are there any pairs of metrically regular subsets with
additional mentioned requirement such that the distance between them is
exactly 2771, that is to say they are extremal in a manner?

5.1 Definitions
Let X C [Fy be an arbitrary set and let y € 5 be an arbitrary vector.
Define the distance between y and X as dist(y, X) = mi)I(l dist(y, ). The
HAS

maximal distance from the set X is

d(X) = maxdist(y, X).
yely
In coding theory this number is also known as the covering radius of
the set X. A vector z € Fy is called mazimally distant from a set X if
dist(z, X) = d(X). The set of all maximally distant vectors from the set
X is called the metrical complement o/f\the set X and denoted by X. A set

X is said to be metrically reqular if X = X. Define, a subset of Boolean
functions to be metrically reqular if the set of corresponding vectors of values
is metrically regular [36].

Sets of functions which have maximum distance from partition set func-
tions were studied in [30], it was shown that partition set functions defined by
some partition are mutually maximally distant sets. Lower bound on size of
the largest metrically regular subset of the Boolean cube was studied in [26].

5.2 The set of bent functions
It is well-known that
Proposition 1. Any isometric mapping of the form
fl@) — FAz@b) & (c.2) 0 d,
where A € GL(n), b,c € F3, d € Fy, preserves bentness.

In [33] the following theorem was proved:
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Theorem 10. For each non-affine Boolean function h € F,, there exists a
bent function f € B, such that f & h is not bent.

From Proposition 1 and Theorem 10 it follows that the set of bent func-
tions is closed under addition of affine Boolean functions only. This fact
implies that the affine functions are precisely all Boolean functions which are
at the maximum distance from the class of bent functions. Namely, in [33] it
was shown that

Theorem 11. A Boolean function in n variables is

— a bent function if and only if it has the mazimal possible distance 271 —
2721 1o the set of all affine functions, that is it is an element of Ay;

— an affine function if and only if it has the maximal possible distance
on=1 _ 9n/2=1 4 the set of all bent functions, that is it is an element

ofl/S’\n.

Thus, from the results given in [33] it follows that there exists a duality,
in some sense, between the definitions of bent functions and affine functions.
In particular, we obtain metrical regularity of the sets of affine functions and
bent functions.

Corollary 5. It holds:

— the set A, of all affine Boolean functions in n variables is metrically
reqular,

— the set B,, of all bent functions in n variables is metrically reqular.

5.3 The set of (anti-)self-dual bent functions

Since for any self-dual Boolean function f € SB™(n) its negation f & 1
is also self-dual, the maximal Hamming distance from the set SB*(n) is at
most 2771, It was proved by Carlet et. al. in [4] that the Hamming distance
between any pair of self-dual and anti-self-dual bent functions, both in n
variables, is equal to 2"~ !, From that it follows that

d (SB(n)) =2""1,

and all anti-self-dual bent functions in n variables belong to the metrical
complement of the set of self-dual bent functions in n variables.

In paper [18] the metrical complement of the set of (anti-)self-dual bent
functions in n > 4 variables was completely characterized by using the or-
thogonal decomposition (1) and the existence of the basis provided by the
Theorem 9, namely it was proven that
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Theorem 12. Let n > 4, then the following statements hold:

— The metrical complement of the set of self-dual bent functions coincides
with the set of anti-self-dual bent functions;

— The metrical complement of the set of anti-self-dual bent functions co-
incides with the set of self-dual bent functions.

As for the pair of the sets of bent functions and affine functions, it follows
that there exists a duality, in some sense, between the sets of self-dual and
anti-self-dual bent functions in n > 4 variables.

The case n = 2 was considered explicitely and it appeared that both
SB™(2) and SB7(2) are metrically regular sets. From that and the Theo-
rem 12 it follows

Theorem 13. The sets SB(n), SB™(n) are metrically regular sets, both
with covering radius 2" 1.

6 The group of automorphisms

Study of automorphism groups of mathematical objects deserves atten-
tion since these groups are closely connected with the structure of the objects.
There exists a natural question: how groups of automorphisms of two math-
ematical objects, one of which is embedded to another one, are related.

An example of such a problem statement is the set of bent functions in
n variables and one of its significant subclasses which consisits of self-dual
bent functions in n variables.

It is also worth mentioning that the complexity of classification of com-
binatorial objects depends on generality of the approach. Consequently, the
question "if the common approach to classify (self-dual) bent functions is the
most general within automorphisms of the set of Boolean functions’, arises
naturally.

6.1 Isometric mappings and automorphism groups

A mapping ¢ of the set of all Boolean functions in n variables to itself
is called zsometric if it preserves the Hamming distance between functions,
that is

dist(¢(f), ¢(g)) = dist(f, 9),

for any f, g € F,. Following [19] denote the set of all isometric mappings of
the set of all Boolean functions in n variables to itself by Z,,.
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It is known (A. A. Markov, 1956) that every isometric mapping of all
Boolean functions in n variables to itself has the unique representation of the
form

flx) — f(m(z)) ® g(z), (2)
where 7 is a permutation on the set F} and g € F, [22]. The mapping of
this form is denoted by ., € Z,.

The group of automorphisms of a fixed subset M C F, is the group of
isometric mappings of the set of all Boolean functions in n variables to itself
preserving the set M. It is denoted by Aut (M).

6.2 Matrix representation

For a number k € {0,1,...,2" — 1} denote by v; € F} its binary repre-
sentation.

Recall that a square matrix is called monomial (or generalized permuta-
tion matriz) if it has exactly one nonzero entry in each row and each column.

There is an one-to-one correspondence between the set Z,, and the set of
monomial matrices of order 2" x 2" with nonzero elements from the set {£1}.
Indeed, consider an arbitrary mapping ¢r, € Z,. Then for any f € F, and
its sign function

F = (=)0, (-1, (-0 € {1}
the sign function
= ()70, (-1, ()07 ) € (1)

of f' = .4 (f) € F, can be expressed as [’ = AF, where A is a 2" x 2"
monomial matrix, constructed by the permutation 7 and the function g:

\ f /

in which in the 4-th row a nonzero element (—1)9%i-1) is in the j-th column,
where (7 — 1) is a number with binary representation 7 (v;_1). So the i-th
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component of F/ = AF is equal to
(_1)f'(Vz‘—1) _ (_1)f(7T(Vz‘—1)) ) (_1)9(Vv:—1) _ (_1)f(7T(Vi—1))@9(V¢—1)7

for any ¢ € {1,2,...,2"}, that is equivalent to
fila)=f(r(z)®g(x), zeF

6.3 The group of automorphisms of the set of bent functions

Some attempts to determine the automorphism group of a given bent
function were undertaken by Dempwolff [9] in 2006. Results were presented
in terms of elementary Abelian Hadamard difference sets (equivalently, bent
functions).

A natural question whether there exist isometric mappings of Boolean
functions into itself, distinct from those mentioned in Proposition 1, which
preserve the class of bent function was completely solved in paper [31], where
it was proved that there were no other mappings possessing such a property.
Namely by using the Theorem 11 in view of the duality the following coinci-
dence was shown.

Theorem 14.
Aut (B,) = Aut (A4,) .

Note that the set of all affine functions in n variables forms a group
isomorphic to IFSH. The group of automorphisms of the set of all affine
functions in n variables consists, as it is well known, of mappings of the
form (2) with affine permutation 7 and affine shift g, see, for example, [21].
So, the result is formulated as follows.

Theorem 15. It holds
Aut (B,) = GA(n) x Fy

where GA(n) stands for the affine group and the symbol X for semidirect
product.

These results imply the non-existence of a more general approach to
equivalence of bent functions than that on the base of isometric mappings.
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6.4 Isometric bijections between self-dual and anti-self-dual bent
functions

It is known [4] that there exists a bijection between SB*(n) and SB™(n),
based on the decomposition of sign functions of (anti-)self-dual bent func-
tions. Also note that from the existence of such bijection it follows that
ISB*(n)| =SB~ (n)|.

Namely, let (Y, Z) € {£1}*", where Y, Z € {:i:l}Qn_l, be a sign function
for some f € SB*(n). Then a vector (Z, —Y) € {#1}*" is a sign function for
some function from SB™(n). In terms of isometric mappings the mentioned
transformation can be represented as

f@) — flz @)@ (e r),

where ¢ = (1,0,0, ...,0) € F?.
In paper [14] it was mentioned that the more general form of this mapping

f@) — fx@c)® (),

where ¢ € FYy, wt(c) is odd, is a bijection between SB*(n) and SB™(n). It is
obvious that this mapping is an element from Z,,.

In paper [19] these results were generalized within isometric mappings
from the set Z,, for n > 4.

The criterion of bijectivity between self-dual and anti-self-dual bent func-

tions was obtained in [19] with a use of the orthogonal decomposition (1) and
the basis from the Theorem 9.

Theorem 16. Let n > 4, then isometric mapping o 4 € L, with matriz A
is a bijection between SB™(n) and SB™(n) if and only if AH, = —H,A.

By using this criterion in [19] the general form of considered isometric
bijections was found.

Theorem 17. Forn = 4 isometric mapping pr 4 € L, is a bijection between
SB*(n) and SB™(n) if and only if

() =L(xr®c), x € F3,

and
g(x) = {c,x) ®d, v € Fy,

where L € O, c € F, wt(c) is odd, d € Fs.
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6.5 The group of automorphisms of the set of (anti-)self-dual bent
functions

In [4] the followng problem was pointed:

Open question (Carlet, Danielson, Parker, Solé, 2010): to find
mappings preserving self-duality, distinct from the known ones, or give a
proof that there are no more.

In paper [19] this question was resolved within isometric mappings of the
set of all Boolean functions in n > 4 variables into itself.

At first the problem of how the sets of isometric mapping preserving self-
duality and anti-self-duality or, in other words, groups of automorphisms of
the sets SB*(n) and SB™(n) are related. This problem was solved in [19],
where with a use of the orthogonal decomposition (1) and the basis from
the Theorem 9, the criterion of preserving self-duality was given.

Theorem 18. Let n > 4, then for isometric mapping pr 4 € L, with matric
A the following conditions are equivalent:

1) @r 4 preserves self-duality;
2) ©r. g preserves anti-self-duality;
3) AM, = H,A.

From this result it follows that

Corollary 6. For n > 4 it holds Aut (SB*(n)) = Aut (SB™(n)).

The problem of characterizing mappings which preserve self-duality was
studied by Carlet et. al. in [4] and Feulner et. al. in [11], where it was shown
that the mapping

fx) — f(L(z®0c) @ (e,x) D d,

where L € O,, ¢ € F}, wt(c) is even, d € Fy, preserves self-duality of a
bent function. It is obvious that this mapping is isometric and corresponds
to or 4 € Z,, with

() =L(r®c), x €y,
and

g(x) = {c,x) ®d, v € F},

where L € O,, ¢ € F}, wt(c) is even, d € Fy. The group which consists of
mappings of such form is called an extended orthogonal group and denoted
by O,, [8, 11]. It is known that this group is a subgroup of GL (n + 2,Fs) [11].
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In paper [19] known results were generalized within isometric mappings
from the set Z,, for n > 4. Namely by using the criterion from Theorem 18
and the matrix representation of isometric mappings it was obtained that
the desired group of automorphisms coincides with the extended orthogonal

group.
Theorem 19. For n > 4 it holds

Aut (SB¥(n)) = Aut (SB™(n)) = O,.

In view of Theorems 17 and 19 it appeares that bijections and mappings
which preserve self-duality are quite similar except the parity of the vector
c € [Fy, which ’switches’ them in some sence.

It follows that the classification of self-dual bent functions in n > 4
variables based on the restricted form of affine equivalence proposed in ar-
ticles [4, 11] is the most general within isometric mappings of the set of all
Boolean functions in n variables into itself.

6.6 Isometric mappings and the Rayleigh quotient

In [4] the Rayleigh quotient Sy of a Boolean function f € F,, was defined

as
Sy = Z (—1)f@@fW)ey) — Z (_1)f(y)Wf(y)_

x,yclFy yelky

In a scope of bent functions the Rayleigh quotient characterizes the Ham-
ming distance between a bent function and its dual. Indeed, let f € B,,, then

1

1
__ on—1
SSr =2 = oNy.

dist(f, f) = 2" - :

In [4] it was proved that for any f € F,, the absolute value of Sy is at
most 2°"/2 with equality if and only if f is self-dual (—|—23”/ 2) and anti-self-
dual (—2%"2) bent function. That is the maximum (minimum) value of the
Rayleigh quotient of a Boolean function in an even number of variables is
attainable on self-dual (anti-self-dual) bent functions and only them, thus
providing a criterion for (anti-)self-duality in terms of the Rayleigh quotient
values.

In article [8] the operations on Boolean functions that preserve bentness
and the Rayleigh quotient were given. Namely, it was proved that for any
feB,LeO,cecTFy dec T, the functions g, h € B,, defined as g(z) =
f(Lx) & d and h(z) = f(x®c) & (c,x) providle N, = Ny and N, =
(—1)ON,.
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The mentioned operations are isometric mappings from Z,,. The complete
characterization of isometric mappings that preserve the Rayleigh quotient
as well as change it was given in [19].

Theorem 20. If n > 4 then isometric mapping v, € I, preserves the
Rayleigh quotient if and only if it preserves self-duality.

Theorem 21. If n > 4 then isometric mapping o= 4 € L, changes the sign
of the Rayleigh quotient if and only if it is a bijection between SBY(n) and
SB™(n).

7 Conclusion

In this work we considered metrical properties of the set of bent functions
and its subset of functions which coincide with their duals. The group of
automorphisms and metrical complements of these sets are described. We also
gave some general metrical properties of the set of self-dual bent functions
and considered an iterative construction.

An interesting question is the characterization of isometric mappings pre-
serving bentness and self-duality, which are not necessarily automorphisms
of the set of all Boolean functions.
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Abstract—First imlementation of blockchain technology was
appeared in 2008, and 12 years later more than 2000 different
implementations of it have appeared. After deep analysis we
found that approaches for development blockchain technologies is
fragmented, there are no common system of concepts and general
model of technology. In this article we want to propose the general
universal model and system of concepts for the blockchain
technology irrespective of differenced of some implementations.
Our approach is based on a technical analysis of the popular
blockchains. The results of this work can be used by architects
of new blockchains implementstions, by researchers to achieve
theirs goals and also in educational process.

I. INTRODUCTION
A. Blockchain definition

LOCKCHAIN technology has become popular due to the
B its properties such as openness, immutability, inability to
delete stored data, decentralization and the ability to make
decisions in an untrusted environment between equal partic-
ipants in this network without the participation of a trusted
party (trusted centre). Thus, blockchain uses in a wide variety
of subject areas, especially in logistics, banking and public
administration.

Blockchain is a type of decentralized system that collects,
stores and manages data, in which:

o consensus will be reached in an untrusted environment;

e transactions are stored in a data structure called blocks,

and each subsequent block stores the value of the hash

function from the contents of the previous one;

« copies of the blockchain are stored at the same time by

all its users and are automatically updated.

In this work, under the blockchain is meant a system that
uses a chain of blocks as a technology for storing data.
It provides ensures the immutability and integrity of the
data stored in the blocks. Unlike centralized systems, where
consensus can be achieved through a central node, blockchain
technology allows to reach consensus in decentralized environ-
ment. Moreover, in the blockchain system, consensus can be

This work was supported by Math Centre in Academgorodok by agreement
of The Ministry of Science and Higher Education of the Russian Federation
number 075-15-2019-1613 and by JetBrains Research Cryptography Labora-
tory.

reached when the network nodes are not authorized. It means
that the probability of malicious nodes or Byzantine nodes
[1] appearing on the network is increase. In decentralized
networks with unauthorized (untrusted) nodes, a Sybil [2]
attack may occur. It can happens when the node performing the
calculations connects only to nodes controlled by the attacker,
which entails incorrect behavior and consensus in making a
decision that is beneficial to the attacker. Blockchain tech-
nology allows to make the right decisions in a decentralized
network with untrusted nodes, provided that 51% of the nodes
are not intruders.

B. Introduction to history

The first practical implementation of blockchain technology
was done in 2008, it was described in the article by S.
Nakomoto about digital monetary system Bitcoin [3]. Bitcoin
is a protocol for exchanging digital money in a decentralized
untrusted environment that allows to make transactions without
the participation of third parties (trusted centre).

But before the publication of this article, it was made lots
of reseaches influented over on the blockchain technology
appearing. In 1982 D. Chaum proposed the blind signature
algorithm and introduced the concept of digital money [4]. S.
Haber and S. Shtornetta presented a theoretical description of
the system for certifying immutability of documents, built on
timestamps in 1991 [5]. The Proof of Work (PoW) mechanism
was proposed by A. Back in the Hashcash project to prevent
[6] spamming. The idea of smart contracts was proposed by
N. Szabo in 1996 [7]. N. Szabo also proposed a protocol for
digital money Bit-gold in 1998, which was published in 2005
[8]; it was based on bit-chain computation and used the PoW
consensus mechanism. But the system was not implemented
in practice and was vulnerable to the Sybil attack.

However, the first implementation of blockchain technology
was created only as a part of the Bitcoin cryptocurrency
project. Subsequently, new cryptocurrency systems began to
appear, similar to Bitcoin. It was added data hiding mecha-
nisms, such as in Zcash [9], transaction acceleration mecha-
nisms, such as in Litecoin [10]. Currencies were created for
various purposes, for example, providing a set of alternative
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DNS servers as in Namecoin [11]. The first implemented
blockchain which was a platform for creating a smart contracts
was Ethereum, created by V. Buterin in 2013 [12].

II. MOTIVATION OF CREATION A BLOCKCHAIN
TECHNOLOGY MODEL

A. Statement of the Problem

An analysis of several hundred articles in Scopus on the
topic of blockchain technologies showed that there are practi-
cally no scientific works that describes blockchain technology
in general focused on its technical construction, covering all
components of technology, regardless of specific implemen-
tations. In this direction it is worth highlighting this work
[13], an overview of the blockchain technology components
from the developers of the “Roadmap for the development
of Distributed Ledger Technology (DLT)” in Russian Fed-
eration [14], an activity of the Geneva Telecommunication
Standardization Sector Assembly (ITU) [15] and an activity
of ISO/TC 307 committees [16]. But the results of most
researchers work are not yet publicly available or have obvious
flaws. This confirms the assumption that knowledge about
technology is fragmented and the overall picture is not visible
to researchers. This slows down the development of new
technology implementations and makes it difficult to analyze
new blockchains when we need to find real innovations, in
contrast to the result of applying marketing tools.

B. Methods, Purpose and Criteria of the Developed Model

In this article the task of constructing a general universal
model was to propose a model that would meet the following
criteria: it would make it possible to make a universal descrip-
tion of current blockchain systems, answer questions about the
structure of the system, and pose new questions to researchers
and industry engineers. To build the model, an experimental-
analytical approach was used: based on existing software im-
plementations of the blockchain technology, the components of
the technology were analyzed, then the obtained components
were generalized, and a system of concepts was formulated
for them. Then it was shown that each specific technology
implementation corresponded to the proposed model.

To make a general universal model, five popular blockchains
were analyzed, which are independent implementations of
platforms for developing decentralized applications and cryp-
tocurrencies. Among them: Bitcoin [17], Ethereum [18], NEO
[19], DASH [20], EOS [21]. The choice of these technologies
is due to their relevance as platforms for the development
of decentralized applications, the high level of readiness of
the technology for application, its developed by community
to support them and the availability of satisfactory docu-
mentation. The characteristics of the selected blockchains are
presented in the table (cf. table I).

To solve this problem the general model of blockchain
technology was developed. This model does not depend on
specific implementations. A key components of blockchain
technology were defined and their definitions were supposed
with the aim of eliminating disagreements of interpretations.

Additional
Functionality
N R
Blockchain
Implementation
|
Blockchain | | Transaction ||
Architecture Model

Infrastructure Node H Client H VM

Add-Ons
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Consensus
Mechanism

|| Network ||
Architecture
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Fig. 1. Proposed blockchain technology model

The developed general model of blockchain technology is
presented in the next section.

III. PROPOSED BLOCKCHAIN TECHNOLOGY MODEL

For the five selected blockchains some documents as s
technical documentations, technical concepts, «yellow papers»
were analyzed. Common components that uniquely determine
the blockchain technology were identified. These components
are shown in the figure 1 and described in the text below.

At the first, basic, level of the model are the infrastructure
components that ensure the functioning of the system. This
is node — a single computer that performs actions on the
network; client — software that implements the protocol of
interaction with the blockchain; and virtual machine (VM)
— a software system that emulates distributed work of a
decentralized blockchain platform and executing decentralized
applications and smart contracts.

At the second level, components are placed that ensure the
functioning of the blockchain network. Depending on how this
level is built, implementation features are established.

Network architecture — a combination of network nodes and
a set of rules which uses for the the transmission of messages
over the network. Blockchain networks can be single-layer or
two-layer, public or private; they can have separation of nodes
by roles.

Consensus Mechanism is a protocol that allows to reach an
agreement between equal participants in a decentralized net-
work. There are many implementations, but the most popular
consensus is PoW, PoS, BFT and etc.

Transaction Model is a set of algorithms and features of
design of the blockchain implementations that determine the
method of conducting transactions and fixing the state of a
distributed system. Currently, there are only two models uses
in blockchains - UTXO or account model.

Network Protocol - the rules which uses for transmitted data
over the network.

At the third level, objects and processes are located. This
level arrangement depends on the implementation of the
previous level. To begin with, we list objects, the presence
of which is uniquely determined the blockchain technology.
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TABLE I
CHARACTERISTICS OF THE INVESTIGATED BLOCKCHAINS

Blockchain | Transaction validation speed Block size One block creation speed Bandwidth
Bitcoin 78 Min. 1 Mb 10 Min. 3 TPS
Ethereum 6 Min. 1 Mb 15 Sec. 20 (PoW), 400 (PoA) TPS
EOS 1,5 Sec. About 1 Mb 1 Sec. 50000 TPS

NEO 15 Sec. About 1 Mb 15 Sec. 1000-10000 TPS
DASH 15 Min. 2 Mb 1 Sec. 28-56 TPS

Block is a data structure uses to store data on the blockchain.
The block stores transactions, network status, smart contracts,
permissions to access data and other information.

Block chain is a data structure constructed by sequentially
combining blocks into a chain. By storing the value of the
hash function from the previous block, all blocks are strictly
sequential, numbered by continuous numbering, the child
block always refers to only one parent block.

Transaction is the minimum logically meaningful operation
of the transfer or exchange of assets that makes sense and can
only be completed in full. A transaction can transfer messages,
actions, create a contract, and more.

Address (account, account) is a structure for identifying an
active object on the network. Addresses uniquely determine
the sender and recipient of the assets transferred to the
blockchain network, all actions of the user in the network
are associated with the address. Depending on the blockchain,
the address can be either a string or a data structure, it can be
associated with a user or with a smart contact.

Smart contract is a set of formalized rules implemented in
the form of program code, the execution of which entails some
events in the real world or digital systems. Smart contracts
are not a mandatory component of the blockchain network,
however, as practice has shown, contracts have become the
main functional element of blockchain technology. Depending
on the structure of the blockchain, smart contracts can be
implemented either in Turing-complete languages or non-
Turing-complete ones.

The objects listed above are part of the processes. The main
processes taking place in the blockchain network are presented
below.

Transactional life cycle: transaction signing process; broad-
casting over the network; transaction verification; transaction
completion. Including a transaction in a block: process of
taking a set of transactions for a block; transaction validation;
block signing process; sending a block to the network; block
fixing in a common chain. Network Maintenance: consensus
mechanism; network complexity regulation; selecting a chain
that continues the block of several branches; payment for
computing resources.

The fourth level defines additional functionality for
blockchain networks that do not affect the internal architecture
of the technology, but significantly expand its functionality.
For example, mechanisms that provide increased speed and
confidentiality of transactions, mechanisms for off-chain trans-

actions, modules that protect blockchain against attacks by
quantum computers, and others.

IV. CONCLUSIONS

After analyzing the blockchain implementations and build-
ing model as a result, we can offer a method for considering
each new technology being developed. To analyze the new
blockchain implementation, first of all, we should pay attention
to the transaction model. Currently, only two models are pre-
sented - UTXO and the accounts model. The transaction model
affects on: the structure of blockchain blocks, the structure of
addresses (accounts), the existence of smart contracts in this
blockchain and the principles of their construction, approaches
to fixing the state of the system. Next, we should pay attention
to the number of layers in the blockchain network, identify
the purpose of each of the layers, consider the consensus
mechanisms used in each layer. This information will give
us an understanding of the transaction validation process —
we can assume the bounds of transaction confirmation rate
and network bandwidth. Based on this, we can suppose the
requirenments to the necessary infrastructure to provide the
network. The transactions rate is determined by the consensus
mechanism, by the number of nodes involved in the transaction
validation process and by the principles of working with
orphaned blocks. The more stronger requirenments to network
decentralization, the lower the transactions speed. The ability
to create smart contracts is determined by the transaction
model.

Using the results of this research we can explain approaches
to the implementation of specific blockchain technologies.
After researches we suppose that the majority of blockchain
implementations are based on Bitcoin and Ethereum con-
struction, and subsequently they were supplemented by some
improvements at different levels. According to data obtained
from open sources, it seems that the NEO blockchain consist
of configuration of networks based on UTXO models and
account models. We suppose that it makes in order to smooth
out the limitations of the Bitcoin network, taken as the basis
for NEO blockchain. This assumption was also made because
the duplicate assets CNEO and CGAS seems artificial in
these network. There is an assumption that the EOS and
NEO blockchains are not blockchains, since the blockchain
operates in an untrusted environment by definition, but for
these networks the main transaction validators are authorized
nodes, which suggests the centralization of these networks.
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The Dash blockchain ensures data confidentiality and transac-
tion speed through mechanisms operating at the fourth level
of the blockchain model.

V. RESULTS

As a result of this work, the general model of blockchain
technology was proposed. This model allows to make a univer-
sal description of current blockchains, answer some questions
about components and links between it in the system, and pose
new questions to researchers. In this work, it was proved that
the proposed model does not depend on specific implementa-
tions of the five selected blockchains and suggest methods for
considering each new blockchain implementation and explain
approaches to the implementation. In the future, it is planned
to investigate a larger number of different blockchains in order
to confirm the correctness of the model and its quality, also
we plan to show connections of blockchain technology to the
environment.
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Abstract—In this paper, the relationship between quaternary
and Boolean bent functions is studied. The importance of Boolean
bent functions in symmetric cryptography stems from linear
cryptanalysis of stream ciphers. In that context bent functions are
the ones which are the worst approximated by affine functions.
There are also connections between bent functions and distinct
objects of coding theory such as Reed-Muller and Kerdock
codes. The concept of bent functions was generalized for g-
ary functions g Zy — Zg4. Function g 7y — Za is
called a quaternary function in n variables. Any quaternary
function g in n variables can be uniquely represented for any
z,y € 25 as g(z + 2y) = a(z,y) + 2b(z,y) with a and b be
Boolean funtions in 2n variables. A representation of the Walsh—
Hadamard coefficients of a quaternary function is obtained in
terms of the coefficients of Boolean functions b and a@b. A series
of statements are proved showing that the bentness property of
a quaternary function g doesn’t directly depend on the bentness
of Boolean functions b and a @ b. The number of quaternary bent
functions in one and two variables is obtained with a description
of properties of Boolean functions b and a©®b. It was proved that
bentness of a quaternary function implies that b and a & b are
nonlinear. A simple construction of quaternary bent functions in
any number of variables is presented.

Index Terms—cryptography, quaternary functions, Boolean
functions, bent functions

I. INTRODUCTION

A Boolean function in even number of variables is called
bent if it is maximal nonlinear [1]. Nonlinearity is an important
property in cryptography. Ciphers in which functions with
high nonlinearity are used as components are more resistant
to linear cryptanalysis [2] method because bent fucntions are
bad in being approximated by affine functions. Bent functions
were used in design of the block cipher CAST as coordinate
functions of S-blocks [3]. The nonlinear feedback polynomial
of the NFSR (nonlinear feedback shift register) of the stream
cipher Grain is constructed as the sum of a linear function
and a bent function [4]. There are also connections between
bent functions and distinct objects of coding theory such as
Reed-Muller and Kerdock codes [5].

In [6] g-ary (g : Zg" — Z4) bent functions were defined for
g > 1. The study of such functions was due to the desire of

The work is supported by Mathematical Center in Akademgorodok under
agreement No. 075-15-2019-1613 with the Ministry of Science and Higher
Education of the Russian Federation and Laboratory of Cryptography Jet-
Brains Research.

authors to summarize the results of [7] on the use of Boolean
bent functions in CDMA (Code Division Multiple Access)
systems. There are also some works related to extension of
usual linear cryptanalysis such as Z,4-linear cryptanalysis [8].

In [9] direct links between Boolean bent functions and an-
other generalization of Boolean bent functions (f : Zy — Zg)
[10] were explored. We continue this work.

In this paper, the relationship between quaternary (g
Z} — Z4) and Boolean bent functions is studied. It was
proven that the bentness property of a quaternary function
g(x + 2y) = alx,y) + 2b(x,y) doesn’t directly depend on
the bentness of Boolean functions b and a @& b. The number of
quaternary bent functions in one and two variables is obtained
with a description of properties of Boolean functions b and
a @ b. A simple construction of quaternary bent functions in
any number of variables is presented.

Let Zs = {0,1} and Zs = {0,1,2,3}. Denote by Z}
the m-dimensional vector space over Zs and by Zj the n-
dimensional vector space over Z4. Let (x,y) be an inner
product of vectors with summation modulo 2 (denote by &)
and x.y be an inner product of vectors over Z4. The Walsh—
Hadamard transform of Boolean function f in n variables is
the integer-valued function on Z3 defined as

Wy(z) = Z (—1)@®IW) for every a € Zj.
yeLy

Numbers Wy (x) are called Walsh—-Hadamard coefficients of a
Boolean function f. A bent function is a Boolean function in
n variables (n is even) such that |W;(z)| = 2"/2 for every
x € Zy.

Let g be a function from Z} to Z4. The Walsh-Hadamard
transform of a quaternary function g is defined as follows

Wy(z) = Z i*v+9W) for every x € Z7,
yeLy

where °+’ is the addition over Z4. A quaternary function g in n
variables is called quaternary bent function if |W,(z)| = 4™/2
for every x € Z}.

Functions f(z) = (a,z) with a,z € Z} are called linear
Boolean functions in n variables.
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II. QUATERNARY BENT FUNCTIONS IN ONE AND TWO
VARIABLES

Results presented in this section were obtained via exhaus-
tive search of all quaternary functions in one (4 in total) and
two (416 in total) variables.

Note that any quaternary function g in n variables can be
uniquely represented as follows

g(x 4+ 2y) = a(z,y) + 2b(x,y) for every x,y € Zs.

Here ’+’ is the addition over Z,4 and a, b are Boolean functions
in 2n variables.

Proposition 1. Ler g(z + 2y) = a(z,y) + 2b(z,y) be a
quaternary bent function in one variable with x,y € Zo and
a,b be Boolean functions in two variables. Then b and a © b
are bent functions. Here '+’ is the addition over Z.q.

Proposition 2. For every quaternary function g(xz + 2y) =
a(x,y) + 2b(x,y) in one variable with x,y € Zo it is true
that g is a quaternary bent function if and only if b is a bent
Sfunction and a does not depend on y, i.e. a(z,y) =0, 1, x or
x @ 1. Here ’+’ is the addition over Z4.

Computer search shows that the number of quaternary bent
functions in one variable is equal to 32.

There are 200704 quaternary bent functions in 2 variables.
Among them there are 98304 fuctions such that none of
Boolean functions a,b and a @ b is a bent function but for
3072 of them a is a linear Boolean function. There are 36864
quaternary bent functions such that b and a & b are bent
functions, while for 33792 of them a is a nonlinear function,
and for 2304 and 768 functions a is a linear function or
constant respectively. The number of quaternary bent function
in 2 variables with each of a,b and a ®b being a bent function
is equal to 16384. For the remaining 49152 functions, a is a
bent function and b and a ® b are nonlinear Boolean functions.

For functions in three and more variables an exhaustive
search is too hard (there are 2'28 quaternary functions in three
variables).

III. CONNECTION BETWEEN QUATERNARY AND BOOLEAN
BENT FUNCTIONS

Results presented in this section shows that the bentness
property of a quaternary function g doesn’t directly depend on
the bentness of Boolean functions b and a @ b. The following
two lemmas are instrumental in what follows.

Lemma 1.

n

2(@ 2i) =221 4 ... + 22,
i=1

Here ’+’ is the addition over Zy.

Proof. Let |{i: z; = 1}| = k. We have two cases:
1) k is even. Then

2P z)=2-0=0,
i=1
221+ ...+22,=2-kmod4=2-(2-1) mod 4 =

=4-Imod4 =0,
l e NuU{0}.

2) k is odd. Then

20 z)=2-1=2,
i=1
2214+ ...+2z,=2-kmod4=2-(2-1+1) mod 4 =
=4-142mod 4 =2,

l e NU{0}.
O

Lemma 2. There is a relation between Walsh—Hadamard
coefficients of g,b and a & b
Wy(z+2y) =
1
:i(Wb(fE ©y, ) + Waap(y, z) — 2¢1 — 2dy)+

)
+§(Wb(y7$) — Wagp(x @y, x) — 2¢2 + 2da),

with

a= Y

o €ZP\X y' €L

cy = Z

' €LY\ X ,y' €LY

dy = >

o €ZP\X y' €L

dy = >

o €ZI\X y' €L

(_1)b(1'»y')GB(Iay')@(y@')@<m7r'>
(71)b(z/}y/)@<m,y/>®<y,z'>
(—1)b" ¥ @a(a’ v )@,y ) ly,2")

(—1)PE W)l ¥ )@y YO (.2 Dlw )

Here X = {z'|{x,2') = z.2'}.

Proof. In what follows, 4’ in exponent denotes addition over
Zy.

For function g(z + 2y) = a(z,y) + 2b(x,y) the Walsh—
Hadamard coefficient is represented as follows

i (@+2v)- (&' +2y" ) +a(a’y")+2b(2"y)

Wy(z +2y) = Z

x'€LD .y €LD

From Lemma 1 we get that 2(a”,2"") = 2a".2"" for every

" 2" € Z3. Then

(x+2y).(=" +2¢') =

if x.2’ = (z,2'),

if x.2’ # (z,2').

2(y, '),
2(y, ") + 2,

(z,2") + 2(z,y') +
(z,2") +2(z,y) +
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Let X = {a'|z.2’ = (z,2')} then

Wy(x +2y) =

= Z (@2 )+2(zy)+2(y.2") +alz’ .y ) +2b(2" ")
x'€X,y €13

+ Z (@2 ) +2(zy ) +2(y,2" ) +alz’y ) +2b(a’y") +2

Z (_1)(x7y’)+(y7w/)+b(z'7y')i(:cyw/)-%a(wﬂy')
r€X,y' €LY

-

o' €Z\ X,y €T

(=1)@ )+ w2 )0y e ) Fala' )

Here we use the standard maps 3,y : Z4 — Zo defined as

5:0,1—=>0and 5:2,3 —1;
7:0,2—=0and y:1,3 — 1.

For any ¢ € Z, it holds

1@ 1 (—1)p®
z‘tz(—l)ﬁ(“(H(;) +2 (21) z)

Using this formula for ¢ = (z,2’) 4+ a(2’,3’) and the fact
that v((z, ') + a(z', ")) = (z,z') ® a(z’,y') we get that

Wy(x +2y) =

1 )
= 5(51 + Sy — S35 — 54) + 5(51 — Sy — S5 +S4),

with
S =
(—1)z 8wz ) Fa(a’y"))

@' €X,y' €LY
Sy =

Z (_1)Z+($7ﬂf')+a(9€'7y/)+5((33790/>+a(96/7y'))
' eX,y €Ly
S3 =

Z (—1)zHAea’)a(a’ )
@ ELI\X ,y' €LZ
54 =
Z (_1)z+(I7w/>+a(w/7y')+5(<w7w')+a(w/,y/)).

/' €LI\X,y' €LY

Here z = (x,y') + (y,2’) + b(z', y/').

Let Ms = {2/|(z.2’) = 6} for § € Zs. Therefore, we get
73 = (MonX)U(MiNX)U(MyNZ2\X)U (M NZE\X).
Let us divide every sum Si, 5,53 and Sy into two sums

and

x'€Mo,y’ €LY ' €My ,y' €LY

Note that S(a(z’,y") + (@, z)) is equal to 0 or a(a’,y’) for
' € My and =’ € M respectively. Thus, after grouping items
we obtain
S14+ 82— 83— 8y =

Z (_1)b(m/,y/)@<r,y/>@(yw’)@(mvr’>+
a'€X,y €LY
+ 2

' €X,y €LY

@’ €ZP\ Xy’ €13

o €L\ Xy €L}

(_1)b(m/,y/)@a(m/7y/)@<r,y/>@(yﬁf’> _
(—1)PE" )@y Y ly,2 ) Slwa’) _
(=1)PE)Ba(=’ Y@ (y ) S ly,a")

Then
51—52—53+S4:
Z (—1)b(w',y')®(w7y')@<y@'>_

2’ eX,y €LY

-2

2/ €X,y 1L

- D

o €ZI\X y' €L

>

o €ZI\X y' €L

(_1)17(96',y')EBa(w',y')ea(w,y')@(y,x/}@(:wv’) _
(=1)bE" v @y IO a’)
(—1)P 3)@aa’ ) ley )& e Blwa)

The reason why addition over Z, in exponent was replaced
by addition over Zs is because (—1)* M4 = (—1)*mod2 for
any z € Z.

Adding and subtracting ¢; and d; in the first equation and
co and ds in the second one, we obtain the necessary. ]

Theorem 1. Let g(x + 2y) = a(z,y) + 2b(x,y) be a
quaternary bent function with x,y € 74 and a,b be Boolean
Sfunctions in 2n variables. Then b and a ® b are nonlinear
functions for any n > 1.

Proof. There are three possible values of Walsh—-Hadamard
coefficients of a linear Boolean function in 2n variables,
{0, +22"}.

From Lemma 2 we get that

W, (2y) = |
= 5 (W0 0) + Wagi (3:0)) + 2 (Wily,0) ~ Waen (5, 0))

with ¢y € Z7. Note that the reason why there are no coefficients
¢1,C2,d; and do is because the set Z%\ X is empty for z =

{0, ...,0}.

For any complex number z = x + ¢y it is known that
2|2 = 22 4 y®. We know that [IW,(2y)| = 4™/ because g
is a quaternary bent. Hence,

(Wo(y,0) + Waan(y, 0))* + (Wh(y, 0) —

From [6] we know that each of Walsh—-Hadamard coeffi-
cients of quaternary bent function can be expressed as

W,(z) = 4"/2i"®) for every z € Z}

Waan(y,0) =4 - 4™,
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for some quaternary function h. It means that there is only
real or imaginary part of W, (2y). Thus, we get that there are
two possible cases

(Wi (y,0) + Wagp(y,0))*> =0
(Wb(y7 0) - Wa@b(y, 0))2 =4.4",
or
(Wi (y,0) + Waagp(y,0))2 =4 - 47
(Wi(y,0) = Waap(y,0))* = 0.
From the first system we get
Wi (y,0) = =Waan(y, 0),
(2 Wi(y,0))* =4 Wi(y,0)> = 4-4".
Hence,
Wb(y’ 0) = _WGEBb(yv 0) = £2".
One can get that by solving the second system you get
Wi (y,0) = Wagp(y,0) = £2".
Therefore, b, a @ b are nonlinear functions. O

Proposition 3. For every n > 1 there exists a quaternary
Sfunction g(x + 2y) = a(x,y) + 2b(x, y) in n variables which
is not bent, while b and a & b are Boolean bent functions in
2n variables.

Proof. In what follows, "+’ denotes addition over Z, except-
ing summation of indices.

Any quaternary function g in n variables can be uniquely
represented as follows

g(xl + 21’n+1, ey Ty 255277,) =

= Cl(l‘l, -'~7I2n) + 2b($17 .-.71‘2").

Let
n
b(l’l, ..,’l,’gn) = @jSz“_n,
i=1
a(l']_, "71/'271) = xn-‘rl @ c,
with ¢ € Zs.

From Lemma 1 we know that
2b(x1, .., Tan) = 201 Tpy1 + .o + 22, Top.

One can see that g can be divided into sum of n quaternary
functions in one variable

g(frl + an—&-la cy Iy + 255271) ==
=01 (1'1 + 217n+1) + ...+ gn(J:n + 2$2n)7
9i(xi + 2T 1) = ai(i, Tnyi) + 205 (4, Tpyi),
bi (T4, Tnti) = Tipi,
Ln4iq ©® C,’L' = 1,

@il Tnts) = 0, otherwise
, .

It is known that g is a quaternary bent function if and only
if all of g; are quaternary bent functions [11], ¢ = 1,...,n.

From Proposition 2 and by the choice of a and b we get that
g1 is not quaternary bent. This completes the proof. O

Proposition 4. For every n > 2 there exists a quaternary bent
Sfunction g(x + 2y) = a(x,y) + 2b(x,y) in n variables, with
b and a ® b being not bent in 2n variables.

Proof. In what follows, "+’ denotes addition over Z, except-
ing summation of indices.

Any quaternary function g in n variables can be uniquely
represented as follows

g(l'l + 2xn+l» vy T+ 237271) =

=a(x1,...,Tan) + 2b(x1, ..., Tay).

Let

n
b(z1, .., Ton) = P TiTign ® T1Tp12®
i=3
Droxpi1 © x1T2Tn 41,
a(Z1, .., Tan) = T1Tp41-

One can see that b can be divided into sum of n— 2 Boolean
functions in two variables and one Boolean function in four
variables

b(x1, .oy Tan) = b1 (X1, T2, Tpg1, Tni2)D
@bg(xg, (En+3) D ...DH bnfl(l'n,l'gn),
bi(x1, T2, Tpg1, Tni2) = T1Tny2 ® ToTpi1 © T1T2Tp1,
bi(Tit1, Tntit1) = Tip1Tnpiti,
1=2,...,n—1.

It is known that b is a bent function if and only if all of
b; are bent functions [5]. Function by in four variables is not
bent because its degree is equal to three [5].

From Lemma 1 we know that

2b(x1, .., Tan) = 203Tp43 + ... + 2@ Ton+
+ 201 ZTpt2 + 220T 041 + 221 T2T 41

Moreover, g can be divided into sum of n — 2 quaternary
functions in one variable and one quaternary function in two
variables

g(xl +2xn+la cy Iy +2‘%277,) =01 (xl +2xn+17 Z2 +2xn+2)+
+gz($3 + 2$n+3) + ...+ gn_1($n + 21‘2n),
g1(21 + 2241, T2 + 2% 42) = T1Tpp1+
+221Tnyo + 222Tn 41 + 22122T 041,
9i(Tig1 + 2Tnpit1) = 20541 Tngit1,
i=2 .n—1.

From Proposition 2 functions g; are quaternary bent func-
tions, ¢ = 2,...,n — 1. It was checked that the quaternary
function g; is also bent.

It is true that g is a quaternary bent function if and only if all
of g; are bent quaternary bent functions [11],7=1,...,n — 1.
This completes the proof. O

Next hypothesis is based on the fact that the following
statement is true for quaternary functions in one and two
variables.
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Hypothesis 1. For a quaternary bent function g(xz + 2y) =
a(x,y) + 2b(xz,y) in any number of variables it is true that

b is a bent function <= a @b is a bent function.

IV. CONSTRUCTION OF QUATERNARY BENT FUNCTIONS

Following result can be used as a simple construction for
quaternary bent function in any number of variables.

Proposition 5. For every n a quaternary function
g(x1 + 2241, .o, Ty + 2T2p) = aTj + T1Tpt1 + ... + TnTop

is a quaternary bent function with a € Zs, j € {1,...,n} and
"+ is addition over Z,.

Proof. One can see that g can be divided into sum of n
quaternary functions in one variable

9(T1 + 2Tpa1, ey T + 220p) =
= gl(ml + Qxl—&-n) + ...+ gn(xn + 2x2n)7
9i(x;i + 2241 n) = 203244, for i # j,
95 (2 +22j4n) = axj + 22T 4p.

From Proposition 2 each of g; is a quaternary bent function
in one variable, therefore, g is also a quaternary bent function
[11]. O

V. CONCLUSION AND OPEN PROBLEMS

Although the results show that there is no direct connection
between quaternary and Boolean bent functions it’s still might
be possible to connect these notions if we will ask for
additional conditions like it did in Hypothesis 1.

The next step besides proving or refuting Hypothesis 1 can
be generalization of all results for arbitrary q.

Author wish to thank Natalia Tokareva and Aleksandr
Kutsenko for helpful advices and interest to this work.
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Abstract—The paper is devoted to the construction of vectorial
Boolean functions used in S-boxes. We consider the method to
construct vectorial Boolean functions using Boolean functions and
permutations on variables in order to simplify the construction of
vectorial Boolean functions with certain cryptographic properties
such as high nonlinearity, balancedness, low differential J-
uniformity and high algebraic degree. Cryptographic properties
of vectorial Boolean functions constructed via our method are
analyzed for the small number of variables. Necessary and
sufficient conditions for bijectivity of the constructed vectorial
Boolean function are determined for an arbitrary number of
variables.

Index Terms—Boolean function, vectorial Boolean function, S-
box

I. INTRODUCTION

S-boxes play the crucial role for providing resistance of a
block cipher to different types of attacks. The major reason for
this is the following: in classical and modern block ciphers the
main complicated and nonlinear layer is presented namely by
S-boxes. Mathematically, S-box is a vectorial Boolean function
that maps n bits to m bits, or, n — m. Usually, n coincides
with m, moreover, it is a necessary condition for S-box to
be one-to-one, i. e. bijective. Often, the number n that is
considered in practice is not too big. For example, in block
ciphers GOST 28147-89 [1] and Present [2] S-boxes 4 — 4
are used, cipher DES (ex-standard of USA) operates with S-
boxes of type 6 — 4, modern ciphers AES [3] and GOST R
34.12-15 (known as Kuznyechik [4]) use S-boxes 8 — 8.

Indeed, it is very difficult to construct S-boxes of big sizes.
Let us remind that the number of distinct vectorial Boolean
functions from F% to F% is equal to 272" . It means that even
for dimension n = 4 there are 254 distinct vectorial Boolean
functions in n variables; in case n = 6 we can not even desire
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Education of the Russian Federation and Laboratory of Cryptography Jet-
Brains Research.
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to check them all using computer search, since the number of
them is 23%4. But in fact, we are very interested in obtaining
good S-boxes in order to construct resistant ciphers. It is well
known that some special mathematical properties of S-box,
such as high nonlinearity, low differential uniformity, high
algebraic immunity, etc. make a cipher with such S-box be
resistant to linear, differential, algebraic and other methods of
cryptanalysis. It is well known that cryptographic properties of
a Boolean (vectorial) function contradict to each other, [5], [6].
That is why we seek to find vectorial Boolean functions that
reach a tradeoff between different cryptographic properties.
That is why we are obligated to use mathematical methods
(and not a direct computer search) for their constructing.

In this paper we propose a simple method of construct-
ing S-boxes using Boolean functions. We take a Boolean
function f in n variables and a permutation w on n vari-
ables and construct a vectorial Boolean function F). that
maps n bits into n bits by the following rule: F,(x) =
(f(@), f(n(2)), f(x2()),..., f(x""L(x))). where @ runs
through F5. Then we study the cryptographic properties of F;
with respect to f and 7. In general case we give an answer
when F); is a one-to-one function; for the small number of
variables we analyze what cryptographic properties of F, we
can provide. So, we invite specialists to use this construction
for obtaining good S-boxes. Note that for a fixed 7 the number
of distinct functions F is 22" . e. is equal to the number
of all Boolean functions in n variables. So, exhaustive search
methods are still useful for relatively big dimensions.

II. DEFINITIONS
Let 5 be the vector space of dimension n over Fa. Let

x = (z1,...,2,) be a binary vector and @ denote the addition
modulo 2 (XOR). Recall that standard inner product of two
binary vectors is (z,y) = z1y1 ® ... D TpYn.
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The Walsh — Hadamard transform of a Boolean function
fis
Wi(y) = Z (—1)lzm @l @)
z€Fy

We know that any Boolean function can be uniquely repre-
sented in its algebraic normal form (ANF):

n
f((El, e ,.’En) = @ @ aily__,’ik QCil LR ZL’ik

k=1141,...,7k

®a0a

where for each k indices 41,...,17; are pairwise distinct and
sets {i1,...,1,} are exactly all different nonempty subsets of
the set {1,...,n}; coefficients a;, ;.. ao take values from
5. For a Boolean function f the number of variables in the
longest item of its ANF is called the algebraic degree of
a function (or briefly degree) and is denoted by deg(f). A
Boolean function is affine, quadratic, cubic and so on if its
degree is not more than 1, or equal to 2, 3, etc.

III. CRYPTOGRAPHIC PROPERTIES OF THE FUNCTIONS

A Boolean function f in n variables is called balanced if
it takes every value (0 or 1) the same number of times [7].
A vectorial Boolean function F' : F§ — F3 is balanced if it
takes every value of Fy equally often [6] .

The nonlinearity nl(f) of a Boolean function f in n
variables is the minimum Hamming distance between f and
the set of all affine Boolean functions in n variables [7] . The
nonlinearity nl(F') of a vectorial Boolean function F is the
minimal nonlinearity of all its component Boolean functions:

nl(F) = 51&1:} nl(F,) = grel%FIé d({v,F), A,) =

~ i e, A o)

where v # 0 and A, = {{(a,2) @b :a € F},b € Fy} is the
class of all affine Boolean functions of n variables [6].

The algebraic degree of a vectorial Boolean function is the
maximal algebraic degree of its component functions [6] .

Let ¢ be a positive even integer. A vectorial Boolean func-
tion F': F} — % is differential §-uniform if for every a # 0
in FJ and every b € F} the equation F(z) ® F(xr @ a) = b
has not more than § solutions [6] . The minimal possible value
of § for functions from F4 to Fy is 2. Differential 2-uniform
functions are called APN functions.

IV. S-BOX CONSTRUCTION BASED ON A BOOLEAN
FUNCTION

Let us present the following construction of a vectorial
Boolean function based on a Boolean function and a per-
mutation. Let 7 be an arbitrary permutation on n elements,
m € Sp. If @ = (21,...,z,) is a binary vector then let 7(z)
be a vector obtained as 7(x) = (Zx(1),.--,Tr(n)). Let f be
a Boolean function in n variables. Define a vectorial Boolean
function F;; : Fy — F5 as follows

Fr(z) = (f(x), f(n(2)), f(x*(@)),.... f(x" "} (2)).

In this paper we would like to study cryptographic proper-
ties of the vectorial Boolean function F} in dependence of
properties of the Boolean function f and the permutation 7.

Denote by A ,, the class of all vectorial Boolean functions
in n variables obtained in the described manner. So,

App={F: :F; - Fy:
F‘ﬂ'(x) = (f($)7 f(ﬂ'(l‘)), BE) f(ﬂ-n_l(x)))

for some f :Fy — Fa}.

Separately, we consider the special case of a permutation.
Let p be a cyclic permutation on n coordinates, namely

p(x) = (Tn,T1,22,. .., Tp_1).

It is a permutation that very naturally can be found in different
cryptographic constructions. It reflects the principle of acting
for shift registers and is used for defining rotation symmetric
functions [5] applied for cryptography.

If 7 is identical then the class A, we denote briefly as
A,. If 7 is a cyclic rotation, i. e. 7 = p then we deal with
class A, . Otherwise, in notation A, ,, we suppose that 7 is
an arbitrary permutation.

V. FUNCTIONS IN SMALL NUMBER OF VARIABLES

Let us give a classification of vectorial Boolean functions
in Ay, where n =2,3,4 and 7 € S,.

Proposition 5.1: 1t holds |Ar ,| = 22" for an arbitrary
permutation 7 on n variables.

Proof: 1If Boolean functions f and g are not equal, then
vectorial Boolean functions F: and G, are not equal, because
their first coordinates are f and g respectively. So |Aj |
equals to number of Boolean functions in n variables which
is 22" O

All of the following propositions in this chapter are obtained
by the results of computer programs.

Let A,, be the set of all derangement permutations for n

elements. For example, A4 contains permutations: (; 23 4)

143
(G3a1), (Givs), (Gids)s (3i73), (Gisd)
(1793) (G373), (3331).
A. Case n =2

Note that for any Boolean function f in 2 variables ni(f) <
1, deg(f) < 2.

In the table I the crypto properties for function F in 2
variables are presented.

)
)

Table 1
CRYPTO PROPERTIES FOR FUNCTION F; IN 2 VARIABLES

For any permutation 7 € S2 and any Boolean

Nonlinearity function f in 2 variables it holds nl(F’) = 0.

Balancedness
Algebraic degree

Differential
S-uniformity

Proposition 5.2

For any permutation m &€ Sg there exists a
Boolean function f in 2 variables such that
o > 2.
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Proposition 5.2: There exist only two balanced vectorial
Boolean functions F' in 2 variables with 0p = 2 in A, ,,
constructed with f;(z) = x;,i = 1, 2.

B. Case n =3

For any Boolean function f in 3 variables nl(f) < 2,
deg(f) < 3. In the table II the crypto properties for function
F. in 3 variables are presented.

Table II
CRYPTO PROPERTIES FOR FUNCTION Fr IN 3 VARIABLES

For permutations 7/, 7’/ € S3, 7/ = (; ? g) ,
! = (i % g there exists a Boolean function
f in 3 variables such that nl(f) = nl(F /) =
nl(F ) = 2. It also holds that if = # =/, 7"’
then for arbitrary Boolean function f in 3 vari-
ables nl(F'x) < 2.

For any permutation m € Aj3 there exists a
balanced Boolean function f in 3 variables such
that vectorial Boolean function F’; is balanced.
For any permutation w € S3 there exists a
Boolean function f in 3 variables such that
deg(f) = deg(Fx) = 3.

For any permutation m € Ags there exists a
Boolean function f in 3 variables such that
dF, = 2. It also holds that if 7 ¢ As then
for arbitrary Boolean function f in 3 variables
Op, = 4.

Proposition 5.3

Nonlinearity

Balancedness

Algebraic degree

Differential
&-uniformity

Proposition 5.3: For permutations 7/, 7" € A3 there exists
a Boolean function f in 3 variables such that if 6z, = 2 then
6F "= 2.

C. Casen=4

For any Boolean function f in 4 variables nl(f) < 6,
deg(f) < 4. |S4| = 4! = 24, |A4] = 9. Denote as A} the
subset of deranged permutations of all 4 elements, consisting
of three pairs of permutations such that 7, b= r,,i=1,2,3:

_ (1234 _ (1234y. _ (1234
= (9311)> ™ = (4123) ™ = (5473)
T =(3742)ime=(5351) ™ = (G572)

In the table III the crypto properties for function F); in 4

variables are presented.

Table III
CRYPTO PROPERTIES FOR FUNCTION F; IN 4 VARIABLES

There is no such vectorial Boolean function F
in Ay 4 that nl(F) = 6 for any permutation
T E Sy.

Proposition 5.4

For any permutation m € A}; and a balanced
Boolean function f in 4 variables such that
0p, = 2, Fr is not balanced.

Proposition 5.4

For any permutation m € A}l there exists a
Boolean function f in 4 variables such that
g = 2. It holds also if @ ¢ Al then
for arbitrary Boolean function f in 4 variables
op, > 4.

Nonlinearity

Balancedness

Algebraic degree

Differential
§-uniformity

Proposition 5.4: For any permutation 7 € A} there exists
a Boolean function f in 4 variables such that if 6, = 2 and
nonlinearity and algebraic degree of f and F); are the same
then 0p__, = 2. Moreover, nonlinearity and algebraic degree
of F.—1 and f coincide.

VI. ONE-TO-ONE PROPERTY

In this section we study properties of a Boolean function
f that provide the bijectiveness of the corresponding vectorial
function F.

Proposition 6.1: Let w € Sy, Fr € Ay ,,. Then F(m(x)) =
p Y (Fr(z)) for all z € F3;

Proof: We obtain the result directly from definition. (]

Let 7 be an arbitrary permutation, we define action of 7 on
F?% by the rule: if x € F} then zom = m(x). This action splits

4 into orbits relatively to 7 . If x in some orbit o, we call =
generator of o. We call O (x) the orbit relative to the action
of m.

Example: Let us give some examples of the orbits.

For n = 3 the set I} is divided into four orbits with respect
to permutation p:

We denote by O, , a set of all orbits relatively action
of m on 4. The proposition 6.1 implies that for arbitrary
F. € A, values of elements of some m-orbit g € O,
are elements of some p-orbit ¢ € O, ,, since F(n"(x)) =
p~"(F(z)). Let Mﬁ,n ={9€Oxrn gl =k}

Denote Vr_, Orn — ©,, obtained by the rule:
Up n(Ox(x)) = O,(Fr(z)). Now we can formulate con-
ditions of F; one-to-one property in terms of Up_ .

Proposition 6.2: F, € A;, is an one-to-one function if
and only if ¥x_,, is one-to-one function. In case if ¥p_ ,, is
one-to-one then Uz, (g)| = |g|, for all g € O .

Proof: = Suppose that F is one-to-one function and
V. is not. Let us note that from proposition 6.1 we have
Fro(m*(2)) = p~*(Fy(x)), so ¥, ,, may map orbit of length
k only to orbit of length ¢ where ¢ < k. Since if ¢ > k
then Fi(z) = Fr (7% (x)) = p*(Fy(z)) # Fy (). Thus, there
exists g € ©,, which is not a value of ¥r_,,, or there exist
q,9 € Orpsuchas ¥, (q) = ¥r_,(g). Let us consider the
first case. We have elements of g that are not values of F); and
this contradicts to the one-to-one property of F).. The second
case leads us to a contradiction because orbits ¢, g € O ,, are
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mapped to o € O, and |o| < |g|, |o| < |g|. So, Fr can not
be an one-to-one function.

<= In order to prove reverse statement, let us show that if
Up_ ., is bijective, then the length of ¥r_,(g) equals to the
length of g. Consider some orbit g; of length £ that is mapped
to orbit go of length ¢ and ¢ < k, then reverse function of
W, can not map g to gi, since ¢ < k. So now we conclude
that F. is an one-to-one function, since the cardinality of the
image equals to the cardinality of the preimage. (]

As a consequence of proposition 6.2 we get the following
result:

Proposition 6.3: If it holds for some k : [MF | # |M}, |
then the set of one-to-one functions from A, ,, is empty.

Example: lLet m be a partial derangement. This means
m reorders elements except for some of them, which
are called fixed points. Without loss of generality, we
assume that the first coordinate is fixed. Then vectors
(1,0,...,0),(0,...,0),(1,...,1) form orbits of length 1. But
for p there are always only two orbits which lengths are equal
to one: (0,...,0) and (1,...,1). Thus, for every 7 with fixed
points there are no one-to-one functions from A .

Proposition 6.2 means that in order to construct one-to-one
functions F; € A, we can use bijective maps V,, : O, , —
©,.n, which satisfy |¥,,(g)| = |g| , where g € O, ,,. Then,
depending on them, we can construct F; € A, , such that
\I/an = \I’n

Proposition 6.4: Let ¥,, : ©,, — ©,, which satisfies
¥, (g9)| = |g| for all g € O ,. Then restriction of ¥,, on
M}, is arbitrary permutation from Sjpx .

Now consider the case m = p. We define M} = MF, .
Consider an one-to-one function ¥,, which satisfies |¥,,(g)| =
lg| for all g € © ,,. Let us construct function F,, € A, ,, based
on V¥,. Leto € ©,, be an orbit of length k. If value of F|, for
some x € O is determined then value of F), is determined for
all x € F, since F,(p"(x)) = p~"(F,(x)). Thus for every
Uk, we are able to construct [, ., ., kIM:| functions and
they are all pairwise different.

Proposition 6.5: Tt holds 2% = 2rer |ME].

Proof: Orbits do not intersect by definition and their union
give us 3. ]
This formula allows us to calculate | M| for every k. There
are always only two orbits which lengths are equal to one,
so we can calculate |MP¥| for every prime k. Then we can
calculate it for every k. Therefore we can get a number of
one-to-one functions from A,, via the following result:
Theorem 6.6: The number of one-to-one vectorial Boolean
functions in class A, is equal to [, [My]!- k1M
Proof: Let us count the number of one-to-one maps ¥,, from
O, n to O, ,, that satisfies |V,,(g)| = |g|, g € ©, 5. This map
permutes elements of Mff, so the number of one-to-one ¥,
is [Tx.kjn [MF]!. Every W, generates product of [T, M2
different functions and combining these possibilities we obtain
the result. (|

VII. CONCLUSION

In the paper, we proposed a simple method of constructing
S-boxes using Boolean functions in a small number of vari-
ables. We take a Boolean function f and a permutation 7 and
construct a vectorial Boolean function F}.. We analyzed what
cryptographic properties of F; can be provided with respect
to f and 7. For arbitrary n we study whether there exist one-
to-one functions in Ay , and found their exact number. Also
we describe one-to-one functions F; € Ay ,, as mappings of
orbits with respect to action 7 on F3. As a consequence, we
offer an algorithm for constructing one-to-one functions that
belong to Ay ,. Other cryptographic properties of F' and a
larger number of variables should be studied in the future.
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Abstract

In this work properties of a secondary bent function construction, that inverts values of
the given bent function on an affine subspace, are obtained. Some results regarding normal
and weakly normal bent functions are generalized. Bent functions and their dual functions
are considered in the construction context.

1 Preliminaries

Let us recall some definitions. A bent function is a Boolean function in even number of variables
that are at the maximal possible Hamming distance from the set of all affine Boolean functions.
They were introduced by O. Rothaus [I]. Additional information regarding bent functions can
be found in [2, B]. D, f is the derivative of f in the direction o. Let (x,y) = 151 @ ... B Tnln,
where z,y € Fy. Denote by Indg characteristic function of a set S C Fy. Let us define for
x ey and k<n

Proji(z) = (x1,...,21),

Proji(S) = {Proji(z) |z € S},

El S) = e Fk ,0,...,0) € S}
emy(S) {rel; | (z ) € 5}

n—k

Hereinafter suppose that n is even. By B, we denote the set all bent functions in n variables,
by f — a dual bent function for f € B,.
In this work we consider properties of bent function construction

[ @ Indy,

where f € B, is a given bent function and U is an affine subspace of an arbitrary dimension.
Necessary and sufficient conditions for f @ Indy to be a bent function were proven by C.
Carlet [4].

Theorem 1.1 (C. Carlet, 1994) Let f € B,,, L <%} be a linear subspace and a € F. Then

f & Indggr is a bent function if and only if any of the following equivalent conditions hold:
o D,f is balanced on a ® L for all « € F§ \ L;
o f(z)® (a,z) is either constant or balanced on each coset of L.

We will use the second condition. Thus, the next two sections in some sense describe prop-
erties of dual bent function f.
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2 A balanced representation
Let us introduce the following notion for our convenience.

Definition 2.1 A Boolean function f in n variables has a balanced representation by a linear
subspace L < T3 if f is either constant or balanced on each coset of L.

Note that any function has a balanced representation by the O-dimensional linear subspace
(“either constant or balanced” case allows us to ignore its odd cardinality). The same situation
is for an 1-dimensional linear subspace.

First of all, there are some additional details regarding balanced representations of bent
functions.

Theorem 2.2 Let f € B,, and L be a linear subspace, dim L < n/2. Then

e f has a balanced representation by L if and only if f is constant on each of some 2"~ 2dimL

different cosets of L;
e f can not be constant on more than 2" ~24ML different cosets of L.

Note that the case dim L = n/2 is very interesting for bent functions: for instance, H. Dob-
bertin introduced a large class of normal bent functions for this representation [5].

3 A balanced representation of iterative constructed functions

Let us consider the simplest iterative construction of bent function fio by f € By:

Jra2(@1, .. 2ng2) = f(21,. .., Tn) © Tpy1Zngo.

Recall that fio € B,io if and only if f € B,,. Also, it is true

Jra2(@1, .. xng2) = f(21, ..., Tn) © Tpy1ZTngo.

The question is the balanced representations for f and fio are connected or not. Let us
prove the following proposition.

Proposition 3.1 Let f € B,, and have a balanced representation by L < 4. Then bent function
fro has balanced representations by

o Ly={(z,0,0) | x € L}, i. e. dim Ly = dim L;
o Ly ={(z,y,0) |z € L,yeFy}, i e dimL; =dimL + 1.
Moreover, there is “feedback” from the fis to f.

Theorem 3.2 Let f € B, and fio have a balanced representation by L < IE‘3+2. Then there
exists L' <Y with
dimL —1 <dim L’ < dim L,

such that f has a balanced representation by L'. Moreover, it holds
Elem, (L) < L' < Proj,(L).

In case dim L = n/2+1 the theorem can be easily transform to “f is a normal if and only if fo
is normal” proved in [6], i. e. it is a generalization of weakly normal and normal bent function
properties.
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4 Subspaces for iterative constructed functions

Using Theorem the results of Section |3| can be generalized to the construction properties.

Proposition 4.1 Let f € B,, and f @ Indy € B, where U is an affine subspace of Fy. Then
for bent function fio the following holds:

o fio@® Indy, € Byui2, where Uy = {(z,y,0) | x € U,y € Fy}, i. e. dimU; =dimU + 1.

o fio® Indy, € Bryo, where Uy = {(z,y,2) | x € U,y,z € Fy}, i. e. dimUs = dimU + 2;

Theorem 4.2 Let fio € Byyo and fio ® Indagr € Bpyo, where L < FSH, a € IFSH. Then
there exists L' < F% with
dimL —2 <dimL' <dimL — 1,

such that f @ Indpryj, (a)er € Bn. Moreover, it holds
Elem, (L) < L' < Proj,(L).

Similar to Theorem in case dim L = n/2+ 1 the theorem can be rephrase in terms of weakly
normal bent function properties.
Here, trivial subspace dimensions for f € B, are n (just negation of the function) and n — 1
(addition of an affine function). So, it is naturally to skip these dimensions in the construction.
Computational experiments (see Section [5) show that for non-weakly normal bent function
fi0 € Big found in [7] (Fact 14) the following fact holds.

Fact 4.3 For any affine subspace U < IF%O, dimU < 8, it is true that fi9 ® Indy ¢ Bio.

Corollary 4.4 For any n > 10 there exists a bent function f € By, such that f ®Indy ¢ B, for
any affine subspace U < Fy of dimension at most n/2 + 3.

5 Search subspaces

For the given f € B,, the algorithm described in [6] can help to construct all affine subspaces
U < F4 (of an arbitrary dimension), such that f @& Indy € B,. Though it constructs affine
subspaces such that f is affine on each of them, it “sorts” cosets for convenient usage in a
balanced representation.

Its complexity can be calculated in the following way:

n/2

Y (ILn(P+ @™ = 2IE5(]) + 02,

m=1
where L,,(f) (L%, (f)) are all m-dimensional affine subspaces such that f is affine (constant) on
them.
6 Count of the constructed functions
Let us define for f € B, and 0 <m <n

Constry,(f) ={f ® Indy | U is an m-dimensional affine subspace of Fy} N B,,.

Theorem 6.1 Let f € B, and f@®Indy € B, where U is an affine subspace of F5 of dimension
at most n/2+ 1. Then

supp{f@ (f mU)}

s an affine subspace too.
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Corollary 6.2 |Constr,,(f)| = |Constry(f)| form <n/2+ 1.
Unlike n/2 and n/2 4+ 1 dimensions, for other cases we have

. supp{fEB (f m(])} may not be an affine subspace;

o |Constry,(f)| and |Constry,(f)| may not be equal; such bent functions in 8 variables exist,
for instance, in Maiorana—McFarland class [§].

So, for an arbitrary subspace dimensions some construction properties differ from the case
m=n/2.

It is well known that |Constr,(f)] = 0 for m < n/2. The following theorem estimates
cardinalities of all other Constr,,(f).

Theorem 6.3 For f € B,, and m > n/2 it holds

n—m 22m+2i—n -1
Const < nmm -
’ ons rm(f)‘ — E 2@ _ 1

Moreover, for m < n — 2 the bound is reached if and only if f is quadratic.

This estimate generalizes the bound from [9] for the case m = n/2.
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Abstract

Bent functions of the form F3 — Z, (K.-U Schmidt, 2006) are known as generalized
bent (gbent) functions. In this paper we explore self-dual generalized bent functions and
their metrical properties. Necessary and sufficient conditions for self-duality of Maiorana—
McFarland gbent functions are given. We find the complete Hamming and Lee distance
spectrums between self-dual Maiorana—McFarland gbent functions. It is proved that the set
of quaternary self-dual gbent functions is metrically regular within the Lee distance. Minimal
Lee distance between mentioned functions is obtained as a corollary. We define the action
of a linear operator C2* — C2" on the set of generalized Boolean functions in n variables
and characterize all unitary operators which transform the set of all generalized Boolean
functions in n variables into itself and preserve self-duality. It is proved that there is no such
unitary operator which assigns to every regular generalized bent function in even number n
of variables its dual gbent function. In particular, from this result it follows that there is no
isometric mapping of the set of all Boolean functions into itself which assigns to every bent
function its dual function.

n
Let F4 be a set of binary vectors of length n. For x,y € F4 denote (x,y) = € z;y;, where
i=1

the sign & denotes a sum modulo 2.

A generalized Boolean function f in n variables is any map from [} to Z,, the integers
modulo g. The set of generalized Boolean functions in n variables is denoted by GFi. Let
w = e2™/9. A sign function of f € GF 7 is a complex valued function wf, we will also refer to it
as to a complex vector (wfo,wfl, ...,wa"—l) of length 2", where (fo, f1,..., fon_1) is a vector of
values of the function f.

The Hamming weight wtg(z) of the vector x € F is the number of nonzero coordinates of
x. The Hamming distance disty(f, g) between generalized Boolean functions f, ¢ in n variables
is the cardinality of the set {z € F§|f(x) # g(z)}. The Lee weight of the element z € Z,
is wtr(z) = min {x,q — x}. The Lee distance dz(f, g) between f,g € GF1 is

distz(f,g) = Z wtr, (6(7)),
ey

where 0 € GFI and §(z) = f(z) + (¢ — 1)g(x) for any = € F5. For Boolean case ¢ = 2 the

n
Hamming distance coincides with the Lee distance.

The (generalized) Walsh—-Hadamard transform of f € GF1 is the complex valued function:

Hyly) = 3w/ (1),

z€FY
A generalized Boolean function f in n variables is said to be generalized bent (ghent) if

[Hs(y)| =22,

*The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics
(project no. 0314-2019-0017) and supported by Russian Foundation for Basic Research (project no. 18-07-01394,
20-31-70043) and Laboratory of Cryptography JetBrains Research.
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for all y € F3 [9]. If there exists such f € GFY that Hi(y) = w/W2n/2 for any y € Fy, the
gbent function f is said to be regular and fis called its dual. Note that fis generalized bent as
well. A regular gbent function f in said to be self-dual if f = f, and anti-self-dual if f = f—k 4.
Consequently, it is the case only for even g. So throughout this paper we assume that ¢ is a
natural even number.

In paper [0] for the case when ¢ is divisible by 4, necessary and sufficient conditions for the
bentness of generalized Boolean functions of the form

Fla) =" iz + Ao,
i=1

where Ao, A1,..., A\, € Zg, were obtained. Functions from this class are referred to as affine
functions.

It is well known that Boolean bent function and, as a consequence, self-dual Boolean bent
function can not be affine. The next result shows non-existence of self-dual generalized bent
functions in the class of affine functions.

Theorem 0.1 There are no self-dual generalized bent functions in n variables of the form
n
Fla) = Niwi + Ao,
i=1

where Ao, A1, ..., A\n € Zg.

Bent functions in 2k variables which have a representation

f(z,y) = (z,7(y)) ® 9(y),

where z,y € IF"Z“, T IF"Qc — FS is a permutation and g is a Boolean function in k variables, form
the well known Maiorana—McFarland class of bent functions. It is known [I] that a dual of a
Maiorana—McFarland bent function f(z,y) is equal to

flay) = (n" ), y) @ g (' (2)).

A generalization of this construction for the case ¢ = 4 was given by Schmidt in [9]. In [11]
this construction was given for any even ¢, thus, forming the following construction

f(x,y) = %(xm(y» ®9g(y),

where =,y € IF’Qg , T IF]2f — IF’; is a permutation and g is a generalized Boolean function in k
variables. Its dual is

fley) = S @), y) @9 (v (@)

In the article [2] necessary and sufficient conditions of (anti-)self-duality of Maiorana-McFarland
bent functions, denoted by SBY,(n) (SB},(n)), were given. In [I0] quaternary self-dual Maiorana—
McFarland bent functions were studied and necessary and sufficient conditions of self-duality
were obtained.

In the current work we generalize these results for any even g. Denote the sets of (anti-)self-
dual generalized Maiorana-McFarland bent functions by SB},(n) (SB) 4, (n))

Theorem 0.2 A generalized Maiorana—McFarland bent function

flz,y) = g (@, 7(y)) + 9(y), =,y € Fy?,

is (anti-)self-dual bent if and only if for any y € ]Fg/2

m(y)=L(yDb), g(y)=%<b,y>+d,

where L € Oy, 2,b € IF;/2, wt (b) is even (odd), d € Zy.
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It follows that the number of such functions is a function of ¢ and the cardinality of the
orthogonal group.

Corollary 0.3 It holds
‘SBEM‘Z(")} = \SBgmq(n)I =q-2"%71 0 (n/2,F,)|.

In paper [3] the possible Hamming distances between (anti-)self-dual Maiorana—McFarland
bent functions for the Boolean case were studied and the complete Hamming distances of these
distances was presented, namely it was shown that for f,g € SBL (n) USB),(n), then

. e 1
dist(f, g) € {2” 1 gn—1 <1 + 2r> r=0,1,..,n/2 — 1}.
Moreover, it was shown that if either f, g € SBL (n) or f,g € SB),(n), then all distances given
above are attainable. If f is self-dual bent and g is anti-self-dual bent, then dist(f, g) = 2"~L.
In the current work we generalize this result for any even ¢ in both Hamming and Lee dis-

tances. Denote the mentioned spectrum for the Hamming distance by Spg (SB;Mq (n) USBg 4 (n)),

while for the Lee distance the notation Spy, (SBqu(n) U SBqu(n)) is used.

Theorem 0.4 It holds

n/2—1

Spy (SBY e (n) USBg ye(n)) = {2 '} u {2"—1 <1 + 217«> } ,

r=0

q/2 n/2—1
1
Spr, (SBé () USBgu(n) = {q-2}u | {q L2n2 <1 + 2T> :Fw-2”—7"}.

w=0 r=0

Moreover, all given distances are attainable.

It is possible to derive minimal distances from these spectrums.

Corollary 0.5 The minimal Lee distance between generalized (anti-)self-dual Maiorana—McFarland

bent functions in n variables is equal to 2" 3q, while the minimal Hamming distance is 2" 2.

Recall that RM (r,m) is the length 2™ linear code over that is generated by the monomials
of order at most r in variables z1, 3, ..., T, its minimal Lee distance is equal to 2™~ " [8]. Hence
for RM (2, m) minimal Lee distance is equal to 2"~2. From the obtained results it follows that

Corollary 0.6 The minimal Lee distance 22 between quadratic (generalized) bent functions
is attainable on (anti-)self-dual Maiorana—McFarland bent functions from GMZ only for g = 2.

Let X C Zy be an arbitrary set and let y € Zg be an arbitrary vector. Define the distance
between y and X as dist(y, X) = ml}r{l dist(y, ). The mazimal distance from the set X is
TE

d(X) = 5%%’5 dist(y, X).
q

In coding theory this number is also known as the covering radius of the set X. A vector

z € Zy is called mazimally distant from a set X if dist(z, X) = d(X). The set of all maximally
distant vectors from the set X is called the metrical complement of the set X and denoted by

X. A set X is said to be metrically reqular if X = X. A subset of Boolean functions is said to
be metrically reqular if the set of corresponding vectors of values is metrically regular [13].

In paper [] it was proved that the set of Boolean self-dual bent functions is metrically regular
within the Hamming distance. In current work we prove that within Lee distance this statement
holds for the quaternary case ¢ = 4 as well.
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Theorem 0.7 The sets of (anti-)self-dual generalized quaternary bent functions are metrically
regqular within the Lee distance.

Let ¢ : C*" — C?" be a linear operator with matrix A in canonical basis of the space C".
We will say that ¢ transforms the generalized function f € GF? with sign function F = w/
to the function f’ € GF? if the sign function of f’ is equal to AF. Denote by U the set of
unitary operators C2" — C?" which transform the set of g-ary generalized Boolean functions in
n variables into itself.

The general form of these mappings is given by the following

Theorem 0.8 Every operator from Uy can be uniquely represented in the form

f@) — f(x(z)) + g(z),
where m is a permuation on Fy and g € GF}.

Corollary 0.9 Ewvery operator from Uy, preserves Lee and Hamming distances between general-
ized Boolean functions and FEuclidian distance between their sign functions.

Corollary 0.10 It holds
g =21

From Markov’s theorem (1956) [7] it follows that the general form of isometric mappings of
all Boolean functions in n variables to itself is

f(x) — f(x(x)) ® g(),

where 7 is a permutation on the set F§ and g € F,, [7]. Thus for the Boolean case we have the
following:

Corollary 0.11 For q = 2 there is an one-to-one correspondence between the set Uy and the
set of isometric mappings of all Boolean functions in n variables into itself, defined by Markov’s
theorem.

Corollary 0.12 [t holds
Ui =271 g%

In paper [5] isometric mappings of all Boolean functions in n variables into itself which
preserve self-duality were completely described, namely it was proved that isometric mapping
¢ : f(x) = f(m(z)) ® g(x) preserves self-duality if and only if

m(z) = L(z®c), z €Fy,

and
g(z) = (c,x) ®d, © € Fy,

where L € O,, ¢ € F3, wt(c) is even, d € Fy. It was also shown that isometric mappings of
all Boolean functions in n variables into itself preserves self-duality if and only if it preserves
anti-self-duality.

We generalize this result within the set U1:

Theorem 0.13 Isometric mapping ¢ : f(x) — f(n(z)) @& g(x) preserves (anti-)self-duality of
generalized reqular bent function if and only if

m(x)=L(x®c), v ey,

and
9(@) =3 (c.x) @ d, @ €F3,

where L € Oy, ¢ € Fy, wt(c) is even, d € Z,.
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Regarding the mapping f — f, which assigns the dual bent function to every regular bent
function the following statement holds.

Theorem 0.14 If n is an even number, then in the set U, there is no such operator which
assigns the dual gbent function to every regular gbent function from the set GIB1.

Corollary 0.15 There is no isometric mapping of the set of all Boolean functions into itself
which assigns to every Boolean bent function its dual Boolean bent function.

From this fact and the general form of isometric mappings which preserve bentness [12] it
follows that

Corollary 0.16 The mapping defined on the set of Boolean bent functions in n variables as
follows

f(x) — f(x),

cannot be represented as a combination of an affine transform of coordinates and an affine shift.
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Abstract

In this work we study metric properties of the well-known family of binary Reed-Muller
codes. Let A be an arbitrary subset of the Boolean cube, and A be the metric complement
of A — the set of all vectors of the Boolean cube at the maximal possible distance from A. If
the metric complement of A coincides with A, then the set A is called a metrically reqular set.
The problem of investigating metrically regular sets appeared when studying bent functions,
which have important applications in cryptography and coding theory and are also one of the
earliest examples of a metrically regular set. In this work we describe metric complements
and establish the metric regularity of the codes RM(0,m) and RM(k,m) for k > m — 3.
Additionally, the metric regularity of the codes RM(1,5) and RM (2, 6) is proved. Combined
with previous results by Tokareva N. (2012) concerning duality of affine and bent functions,
this proves the metric regularity of most Reed-Muller codes with known covering radius. It
is conjectured that all Reed-Muller codes are metrically regular.

1 Introduction

The problem of investigating and classifying metrically regular sets was posed by Tokareva
[14, [15] when studying metric properties of bent functions [11]. A Boolean function f in even
number of variables m is called a bent function if it is at the maximal possible distance from the
set of affine functions.

Bent functions have various applications in cryptography, coding theory and combinatorics
[0l 15]. In cryptography, bent functions are valued because of their outstanding nonlinearity,
which allows one to construct S-boxes for block ciphers which possess high resistance to the linear
cryptanalysis [6]. However, many problems related to bent functions remain unsolved; in partic-
ular, the gap between the best known lower and upper bound on the number of bent functions
is extremely large; currently known constructions of bent functions are rather scarse. In 2012
[14], Tokareva has proved that, like bent functions are maximally distant from affine functions,
affine functions are at the maximal possible distance from bent functions, thus establishing the
metric reqularity of both sets. This discovery arouses interest in studying the property of metric
regularity in order to better understand the structure of the set of bent functions.

Let us briefly overview the results obtained in this area. Metric regularity of several classes
of partition set functions is studied in [I3]. The work [4] examines metric properties of self-
dual bent functions. Metric regularity has been actively investigated by the author: metric
complements of linear subspaces of the Boolean cube are studied in the paper [8], while the
works [9] and [I0] are studying possible sizes of the largest and smallest metrically regular set.

In this work we investigate metric properties of Reed-Muller codes. Among the codes of high
order, covering radii of the codes RM(k,m), for k > m — 3 are known. The covering radius of
RM(1,m) for odd m > 7 is unknown, but has been determined for RM(1,5) [I] and RM(1,7)
[7, B]. In [T2], Schatz has found the covering radius of RM(2,6), while recently Wang has

*The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics
(project no. 0314-2019-0017) and supported by Russian Foundation for Basic Research (projects no. 18-07-01394,
19-31-90093) and Laboratory of Cryptography JetBrains Research.

272



established the covering radius of RM(2,7) [16]. For m > 7, the covering radius of RM (2, m)
is still unknown. We prove that the codes RM(k,m), for k = 0 and k > m — 3 and the codes
RM(1,5) and RM(2,6) are metrically regular and also describe their metric complements in
most cases.

2 Preliminaries

Let F5 be the space of binary vectors of length n with the Hamming metric. The Hamming
distance d(-,-) between two binary vectors is defined as the number of coordinates in which these
vectors differ, while wt(-) denotes the weight of a vector, i.e. the number of nonzero values it
contains. The plus sign + denotes addition modulo two (componentwise in case of vectors).

Let X C F3 be an arbitrary set and y € F§ be an arbitrary vector. The distance from the
vector y to the set X is defined as

X) = mi .
d(y, X) gg)rgd(y,x)

The covering radius of the set X is defined as

X) = d(z,X).
p(X) max (2, X)
The set X with p(X) = r is also called a covering code [2] of radius r.
Consider the set
Y ={y e F3ld(y, X) = p(X)}

of all vectors at the maximal possible distance from the set X. This set is called the metric
complement [|§] of X and is denoted by X. Vectors from the metric complement are sometimes

called deep holes of a code. If X = X then the set X is said to be metrically reqular [15].

Note that metrically regular sets always come in pairs, i.e. if A is a metrically regular set,
then its metric complement A is also a metrically regular set and both of them have the same
covering radius. For some simple examples of metric complements and metrically regular sets,
refer to [8] 9] [10].

The following trivial auxiliary lemma, established in [§], will be used throughout the paper.

Lemma 2.1 Let C C F§ be a linear code. Then p(C) = p(C) and a vector x € F% is in C if
and only if v + C = C.

Let F™ be the set of all Boolean functions in m variables. The Reed-Muller code of order &
is defined as:
RM(k,m) = {f € F™: deg(f) < K},

where deg(-) denotes the degree of the algebraic normal form (ANF) of the function.
Let f and g be two functions in m variables. Denote as LY : FJ* — F7* the affine transfor-
mation of the variables with the matrix A and the vector b):

(f o LR)(x) = f(Ax +b).

Here o denotes the composition of the functions. If the vector b is zero, it will be omitted from
the notation. Functions f and g are called linearly equivalent if one can be obtained from the
other by applying a nonsingular linear transformation to the variables, i.e. f = g o La, where
det A # 0.

Ezxtended affine equivalence is more common when classifying boolean functions: functions
f and g are called EA-equivalent if there exists a nonsingular linear transformation of variables
A, a boolean vector b of length m and a function h of degree at most 1 such that f = goLR + h.
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For our study we will use a variant of these two equivalence relations, which will be referred
to as extended linear equivalence (to the power of k). Functions f and g are called EL*-equivalent
if there exists a nonsingular binary matrix A and a function h of degree at most k such that

f=goLa+h.

It is easy to see that this relation is indeed an equivalence. We will denote this equivalence by
frg.

The Reed-Muller code of order k in m variables is usually denoted as RM(k, m). Since we
will refer to these codes regularly, we will instead often use Ry, to denote the Reed-Muller
code of order k in m variables. We will sometimes omit the number of variables m if it is clear
from the context.

3 The Reed-Muller code RM(1,5)

In the work [I], Berlekamp and Welch presented a partition of all cosets of the Ry 5 code into
48 classes with respect to the EA-equivalence and obtained weight distributions for each class
of cosets. Four of these cosets contain only codewords of weight 12 and higher, and those cosets
constitute the metric complement of Ry 5. Thus we can present the metric complement of this
code as:

7%1’5 ={f:f S g for some g from one of 4 farthest classes}

Since R 5 is linear, it follows that p(7/€1,5) = p(Ri5) = 12, and f € 7@1,5 if and only if
f+ 7%1,5 = 7%175. Thus, in order to establish the metric regularity of R 5, we must prove that
for every f ¢ Ri5 it holds f + 7%175 #* 7%175.

This is done by taking a representative f. from every class of cosets C' (aside from R 5 itself)
and showing that there exists a function g. € 7/5175 such that f. + g. ¢ 7%1,5. Since the metric
complement 7/@175 consists of EA-equivalence classes, this proves that none of the functions from
the class C belong to 7/@175. Therefore, the following holds:

Theorem 3.1 The code Ry 5 is metrically reqular.

4 The Reed-Muller codes of orders 0, m, m —1 and m — 2

The Reed-Muller codes of orders 0, m and m — 1 coincide with the repetition code, the whole
space and the even weight code respectively. It is trivial that all of them are metrically regular.

The Reed-Muller code of order m — 2 has covering radius 2 [2]. By definition, it consists of
all Boolean functions of degree at most m — 2. Since all functions of degree m have odd weight,
and all functions of smaller degree have even weight, functions of degree m are at distance 1
from R,,_2, while functions of degree m — 1 are at distance 2 and therefore

7im—? = 7?/m—l \Rm—Q-

~

Since Ry,—2 is linear, p(Rm—2) = p(Rm—2) = 2 and thus functions of degree m are at distance

1 from ﬁm,Q. It follows that R,,—2 = R—_2 and R,,_2 is metrically regular.

5 The Reed-Muller code of order m — 3

5.1 Covering radius
McLoughlin [5] has proved that

m+ 1, if m is odd,

m—+ 2, if m is even.

p(Rm—S) = {
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This result is reestablished by Cohen et al in the book “Covering codes” [2], using a method of
syndrome matrices, different from that in [5]. This method allows us not only to obtain covering
radius of the Reed-Muller code of order m — 3, but also to describe the metric complement of
this code. As with the covering radius, the cases of even and odd m are distinct.

5.2 Case m is even
In this case, the metric complement can be described as follows:
Rm-s=J (9+Rm-s),
geG
where

G= {gsupp(g) = {O7X17X2"'7Xm7X1 ++Xm}7

{x1,...,%Xm} are linearly independent}.

It is easy to see that all functions in G form an equivalence class with respect to the linear
equivalence. Let us pick any function ¢g* from this class. We can now say that a function g is
in R,,_3 if and only if g = g* o La + h for some nonsingular matrix A and some function h of
degree at most m — 3, or, in other words, ¢ is in ﬁm_g if and only if g is EL™ 3-equivalent to
g*. Therefore,

= -3

Rmn-3={9:9"~"¢"},
where g* is some function from the class G (or from ﬁm_g, since all functions in metric com-
plement are EL™ 3-equivalent).

5.3 Case m is odd

In this case, the metric complement can be described as follows:

7/?\/m—?) = U (9 + Rm—B):
geG1UG2

where
G1 ={g:supp(g) =1{0,x1,x2...,Xm },{X1,...,Xm} are linearly independent},

and

Go = {g :supp(f) ={0,x1,%X2. .., Xm—1,X1 + ... + Xm—1},
{x1,...,Xm—1} are linearly independent}.

Same as with the case of even m, all functions in G; form an equivalence class with respect
to the linear equivalence, so do functions from G5. If we now choose a representative from each
class, g7 from G and g5 from Ga, we can describe metric complement in the following manner:

~ -3 -3
Rmn-s={9:9"~"gi}U{g:9"~" gs}.

5.4 Metric regularity

~

Since the code R,,_3 is linear, it follows that p(R.,,—3) = p(R—3) and a function f is in ﬁm,g
if and only if f + ﬁm_g = ﬁm_g. Thus, like in the Section , we prove the metric regularity
of R.mn—3 by proving that no functions other that those contained in R,,_3 preserve the metric
complement under addition, using the representations of metric complements obtained in the
previous subsections.
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6 The Reed-Muller code RM (2,6)

Let us consider one other special case. If we change the order of values in the value vectors of
functions so that the first half of values corresponds to the values of the function when the last
variable is set to 0, and the other half corresponds to the values of the function when the last
variable is set to 1, then each Reed-Muller code (for m > 1, r > 0) can be inductively defined
as follows:

Rrm ={(w,u+v)JueR, m—1,VE Rr_1m-1}

In particular,
R276 = {(u, u—+ V)’u S R275,V € R1,5}.

Since both Ry 5 and R1 5 were shown to be metrically regular, this construction proves useful
and allows us to establish the metric regularity of the code Ro¢ as well. From now on, vectors
in bold will represent value vectors of functions in 5 variables (of length 32), while value vectors
of 6-variable functionAs will be presented as pairs of value vectors of 5-variable functions.

Let (G, u+ V) € 7%276. We will prove that (@1, @ + V) is in R 6 in two steps: first we establish
that 0 is in Ro 5, then we prove that v is in R 5. The following results heavily rely on the fact
that R ¢ attains the upper bound on the covering radius provided by the (u, u + v) construction,
i.e. ,O(R276) = p(’R275) + p(RLg,) [12].

Recall (Section 5) that 7@275 ={g9:9 2 atU{g:g 2 g2}, where g; and go are some
representatives of two EL2-equivalence classes. Let us denote

Rhs={9:9% g}, R3s5:={9:9% g2},
The following lemma is useful when proving that @ € Ra 5:
Lemma 6.1 For each i = 1,2 one of the following statements holds:
1. Vy € 7@25 Yw € F32 it holds (y,w) ¢ Roe;

2. Vy € Rb 5 Iw € F3? such that (y,w) € Rog;

This lemma tells us that for each EL%-equivalence class of 7%275, either all vectors appear in
the metric complement of R as the first half of the vector, or no vectors do. Since for any

(,u+vVv) € 7%276 it holds (4,0 + V) + 7%2,6 = 732,& it is easy to show that @ must keep 73275,
7355 or R§75 in place under addition. From the proof of the metric regularity of the code R,—3m,

for odd m it is not hard to see that only the vectors from Rs 5 do that, and thus the following
holds:

Proposition 6.2 Let (i, @+ V) € Rog. Then i € Ros.

Recall from Section 3 that 7%175 is composed of 4 EA-equivalence classes: 7/@175 = Uf-‘zl Ail’5.
Somewhat similar to Lemma 6.1, the following statement holds:

Lemma 6.3 For each ¢ =1,2,3,4 one of the following statements holds:
1. vyw' € ﬁﬁs V(y,w) € 7?,276 Vu e Ros (d(y,u) =6 - w+u#w);
2. Vw' € 7@15 Iy, w) € Rog Juc Ros: (d(y,u) =6 Aw+u=w);

The following result shows that any of the EA-equivalence classes of the metric complement
of R15 are also rather “unstable” when summed with a non-affine function:

Lemma 6.4 For any v ¢ Ri5 and any i = 1,2,3,4 there exists a vector w € 7%’15 such that
v+w¢Ris.
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These last two lemmas allow us to show that for any (4,0 + V) € 7@276, the vector v is in
R15. Combined with Proposition 6.2, this results in the

Theorem 6.5 Let (ii,1i + V) € Rog. Then (i, 1+ V) € Rag.

Since the inverse inclusion holds for any linear code, Theorem 6.5 establishes the metric
regularity of the code Rag.

7 Conclusion

We have established the metric regularity of the codes RM(1,5), RM(2,6) and of the codes
RM(k,m) for k > m — 3. Factoring in the result by Tokareva [14], which proves the metric
regularity of RM(1,m) for even m, we have covered all infinite families of Reed-Muller codes
with known covering radius. The only other Reed-Muller codes with known covering radius,
metric regularity of which has not been yet established, are RM(1,7) and RM(2,7). Given
these results, we formulate the following

Conjecture 1 All Reed-Muller codes RM(k,m) are metrically regular.
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ON THE NUMBER OF UNSUITABLE BOOLEAN FUNCTIONS IN
CONSTRUCTIONS OF FILTER AND COMBINING MODELS OF
STREAM CIPHERS

T. A. Bonich, M. A. Panferov, N. N. Tokareva

Bonich T.A., Panferov M. A., Tokareva N. N. ON THE NUMBER OF UNSUIT-
ABLE BOOLEAN FUNCTIONS IN CONSTRUCTIONS OF FILTER AND
COMBINING MODELS OF STREAM CIPHERS. It is well known that every
stream cipher is based on a good pseudorandom generator. For cryptographic purposes we
are interested in generation of pseudorandom sequences of the maximal possible period. A
feedback register is one of the most known cryptographic primitives that is used in construc-
tion of stream generators. In this paper we analyze periodic properties of pseudorandom
sequences produced by filter and combiner generators equipped with nonlinear Boolean
functions. We determine which nonlinear functions in these schemes lead to pseudorandom
sequences of not maximal possible period. We call such functions unsuitable and count the
exact number of them for an arbitrary n.

Keywords: stream cipher, filter generator, combiner generator, gamma, Boolean function

Remember that a feedback shift register (FSR) contains two parts: a binary block = =
(Tp—1,...20) of length n and a feedback function f : (z,_1,...,20) — {0,1}, where f is
a Boolean function in n variables. First, we fill the block x with concrete values of bits;
together they form the wnitial state of the register. For functioning of the FSR the time
is considered to be discrete, i. e. it is divided into clock cycles. On each clock cycle, the
value of f(z) is calculated first, then the state x = (x,_1,...,x1,xo) of the register will be
changed to the state 2’ = (z,,_a, ... o, f(x)) while the bit z,_; will be written as the first
bit of the generated sequence gamma.

The properties of gamma generated by FSR are well studied in the case when f is a
linear function. If f is nonlinear,[1], then there are too many open questions with properties
of gamma that all are connected to analysis of nonlinear recurrent sequences, [2] and [3].
That is why in cryptography some nonlinear combinations of linear FSRs are considered,
for instance, filter and combining models of stream generators based on LFSR, [4] and [5].

In this paper we analyze pseudorandom sequences produced by filter and combiner
generators. Namely, we study which nonlinear functions h in these schemes lead to
pseudorandom sequences such that their periods are not maximally possible. We call such
functions unsuitable and count the exact number of them for an arbitrary n.

A linear feedback shift register (LFSR) consists of two parts: a binary vector x =
(Tp_1,...x9) of length n and a linear feedback function f in n variables. A state of the
register is a filling of vector z. During the encryption the register changes its states under
an action of the feedback function. Gamma is a pseudorandom sequence generated by LFSR.

Also, LFSR can be specified using feedback polynomials. It is a polynomial of degree
n defining bits to be summed. If f(z, 1,...,20) = aoZpn_1 D a12,,_2 ® - - - ® a,, 129, Where
@ is sum modulo 2, then the corresponding feedback polynomial is defined as p(z) =
apz" + ;2" '+ -+ + a,_12 + 1. If p(z) is a primitive polynomial, then the period of a

9The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-
1613 with the Ministry of Science and Higher Education of the Russian Federation and Laboratory of
Cryptography JetBrains Research.
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pseudorandom sequence generated by LFSR is maximal, i.e. is equal to 2" — 1. Thererfore,
linear feedback shift registers are usually considers with primitive polinomials.

0.1. Functions for the filter model

The filter generator consists of a single shift register of length n with a linear feedback
and uses a primitive polynomial to change states. A Boolean function h(z,_1,...,%o)
applied to the current state generates a pseudorandom sequence gamma.

Let vy = (y1y2 ... yan_1), where y; = h(xp_1,...,20),y2 = M(Tp-2, ..., 20, f[(Tp-1,...,%0)),
etc. Since the number of all nonzero states is equal to 2™ — 1, the maximal period of gamma
is 2" — 1 too. In this paper we would like do determine all Boolean function h in n variables
that lead to gammas with non-maximum period. Let us call such functions unsuitable.

Note that the number of them does not depend on a linear feedback function. But
whether function is suitable or not for the given generator — it depends on the feedback
function. When we count the number of unsuitable functions h, we do not consider a specific
set of states. We say that there is a certain number of different states which the generator
uses (all sets, that primitive polynomials generate, fit this definition). Next, we study
which pseudorandom sequences will have the maximum length. We analyze the number
of unsuitable sequences and then the number of unsuitable functions. Thus, our reasonings
do not affect the specific order of the states. Accordingly, for any set of states which the
generator uses, there will be the number of unsuitable functions h exactly that we calculated.

Theorem 1. Let n be an integer and 2" — 1 = pi"p5?...p%, where p; are distinct
prime numbers, «; are positive integers, s is a some number. Then the number of unsuitable
Boolean functions in n variables for the filter generator with LFSR based on a primitive
polynomial is equal to

ap—pB as—Ps
I N (B e
BEF}, 670

where 8 = (f1,...,0s), and + is a usual summing.

0.2. Functions for the combining model

Combiner generators use several linear feedback shift registers. Each register has its
own length n;, uses its primitive polynomial for changing states. A Boolean function
h(X1,...,X,) generates the pseudorandom sequence gamma where X; is a register bit
string 7. Since we do not use the zero state in combiner generator the total number of
states does not exceed (2" —1)(2"2 —1)... (2" —1). In this case, the maximum is reached
at ged(n;,n;) = 1 where 4,j = 1,...,m, i # j and if all LFSRs have primitive feedback
polynomials. Then the Boolean function can generate a gamma with period from 1 to
(2™ —1)(2" —1)...(2"™ — 1). Boolean functions h in n variables leading to gammas of
non-maximum period in this case are called unsuitable.

We consider a more general model of a combiner generator. This generalized combining
model is applied in ciphers such as Grain|6] and Bean|7]. Note that the classical combining
model does not allow to describe a number of modern stream ciphers based on the more
complicated operating with bits from different registers. In this case, the more known version
of the combiner generator in which the function depends only on the extreme bits of the
registers is included in the model we are considering. In a nonlinear model sometimes it
is more convenient to work with several smaller registers than with one large register. It
should be noted that the model that we consider can be used not only in cases of all linear
or all non-linear registers but also in cases of mixed registers (i.e. some registers are linear,
some are non-linear).
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Theorem 2. Let n be an integer, > ;" n; = n. And

(@27 —1)(2 — 1) (2" — 1) = ppgE o,

where p; are different prime numbers, «; > 0, s is an integer. Then the number of
unsuitable Boolean functions in n variables for the combiner generator with LFSRs of
lengths nq,...,n,, all based on primitive polynomials is equal to

n n A (ong no nm _ . a)—f s —PBs
92 1+ngtt (2r1—1)(272—1)...(2 1) Z ((_1>Bl+ +ﬁ5+12p11 L.ps )’
BEFs,5#0

where = (f1,...,0s), and + denotes a usual summing.

0.3. Functions for models with nonlinear registers

A nonlinear feedback shift register (NFSR) consists of two parts: a binary vector x =
(Tp—1,...20) of length n and a nonlinear state function f : (x,_1,...,29) — {0,1}, in n
variables.

Similarly to the linear case, consider the filter generator. We assume that NFSR passes
over all 2" states, i.e. it has maximal possible period.

Theorem 3. Let n be an integer. Then the number of unsuitable Boolean functions

in n variables for the filter generator with NFSR of the maximal possible period is equal to
22n71'

There is an another question related to NFSRs: how to determine for which nonlinear
feedback functions NFSR of length n has the maximal possible period 2"7 This question is
hard and still open.

We kindly thank the reviewer for careful reading of our paper and significant remarks.
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YIK 519.7

ON A SECONDARY CONSTRUCTION OF QUADRATIC APN
FUNCTIONS

Kalgin K. V., Idrisova V. A.!

Almost perfect nonlinear functions possess the optimal resistance to the differential
cryptanalysis and are widely studied. Most known constructions of APN functions are
obtained as functions over finite fields Fon and very little is known about combinatorial
constructions in F5. In this work we consider how to obtain a quadratic APN function
in n + 1 variables from a given quadratic APN function in n variables using special
restrictions on new terms.

KaroueBsie caoBa: Vectorial Boolean function, APN function, quadratic function,
secondary construction

Let us recall some definitions. Let F} be the n-dimensional vector space over Fo. A
function F' from [F§ to FJ', where n and m are integers is called a vectorial Boolean function.
If m = 1 such a function is called Boolean. Every vectorial Boolean function F can be
represented as a set of m coordinate functions F' = (fi1,..., fm), where f; is a Boolean
function in n variables. Any vectorial function F' can be represented uniquely in its algebraic

normal form (ANF):
P@) = 3 al[[e)

IEP(N) i€l

where P(N) is a power set of N = {1,...,n} and a; € F5". The algebraic degree of a given
function F is the degree of its ANF: deg (F) =max{|I| : a; # 0,1 € P(N)}. If algebraic
degree of a function F' is not more than 1 then F'is called affine. If for an affine function F
it holds F'(0) = 0 then F is called linear. If algebraic degree of a function F' is equal to 2
then F'is called quadratic. Two vectorial functions F' and G are extended affinely equivalent
(EA-equivalent) if ' = A; o G o Ay + A where A, Ay are affine permutations on F} and
A is an affine function. Let F' be a vectorial Boolean function from [} to 5. For vectors
a,b € F3, where a # 0, consider the value

8(a,b) = { x € Fy | F(z + a) + F(z) = b}|.
Denote by A the following value:

Ap = max _d(a,b).

a#0, beFy

Then F' is called differentially Ap-uniform function. The smaller the parameter A is
the better the resistance of a cipher containing F' as an S-box to differential cryptanalysis.
For the vectorial functions from F} to F} the minimal possible value of Ap is equal to
2. In this case the function F' is called almost perfect nonlinear (APN). This notion was
introduced by K. Nyberg in [7]. APN fuctions draw attention of many researchers, but
there is still a significant list (see, for example, surveys [3], [6] or [8]) of important open
questions. We are especially interested how to find new constructions of APN functions in
vectorspace 7, since almost all the known constructions of this class are found only as

!'The work was carried out within the framework of the state contract of the Sobolev Institute of
Mathematics (project no. 0314-2019-0017) and supported by Russian Foundation for Basic Research
(projects no. 18-07-01394, 20-31-70043) and Laboratory of Cryptography JetBrains Research.
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polynomials over the finite fields, and to the best of our knowledge, only a few approaches
to such combinatorial constructions was proposed, for example, in [4] and [5].

Recall that two vectorial functions F' and G are extended affinely equivalent (EA-
equivalent) if F = Aj o G o Ay + A where A;, Ay are affine permutations on F§ and A
is an affine function. Since F'A-equivalence preserves APNness, it is always possible to omit
linear and constant terms in the algebraic normal form of a given APN function. Further
we will consider quadratic vectorial Boolean functions that have only quadratic terms in
their ANF. The following theorem gives a necessary condition on the ANF of a given APN
function.

Teopema 1. |[1] Let F' = (f1,..., f,) be an APN function in n variables. Then every
quadratic term x;x;, where ¢ # j, appears at least in one coordinate function of F'.

This property motivated us to suggest the following construction of quadratic APN
functions. Let G = (g1,...,9,) be a quadratic APN-function in n variables. Consider
vectorial function F' = (fy,..., fa, fus1) in n + 1 variables such that:

n
fi=ag1+ E A1, TiTpt1;

i=1
n
1
fn =0gn+ Z O i LiTn41, ( )
i=1
n
Sl = Gy + Z Ont1,iTiTn41,
i=1
where a1 ;..., 41, €Fofori=1,...,n and g,41 = Zl<j<k<n Bjrx;x) for some fixed
Bjr € Fa. Note that if ay,, ..., oy, are such that each term z;x,,, appears at least in one
of the coordinate functions fi,..., f,, then the necessary condition of Theorem 1 is held

for the constructed function F.

Each quadratic vectorial function G in n variables can be considered as a symmetric
matrix G = (g,j), where each element g;; € F} is a vector of coefficients corresponding to
term z;x; in the algebraic normal form of G and all diagonal elements g;; are null. It is
necessary to mention that these matrices are essentially the same as so-called QAM matrices
that were used in [10] and [9] to construct and classify a lot of new quadratic APN functions
over finite fields. Using these matrices the APN property can be formulated in the following
way:

YrBepxkaenue 1. Let G be the matrix that corresponds to quadratic vectorial
function G. Then function G is APN if and only if x - (G - a) # 0 for all  # a, where
a,z € F and a # 0.

In terms of matrices the construction from (1) can be considered as an extension of a given
G with an extra bit that represents g,,; in every element and an extra pair of row and
column that represents a set of new terms x;x, 1.

Consider a quadratic APN function G and the corresponding n x n matrix G. Denote
the vector of nonzero coefficients as a = (a4, ..., ;). Let us fix g,y and construct (n +
1) x (n + 1) matrix F by adding (a1, ..., a,,0) as the last column and the last row and
adding new bit to every element according to the choice of g,,1. Let us denote as G’ the
submatrix (f;;) of F, such that ¢, j < n+ 1. Let (X) denote the linear span of X and F' be
the quadratic vectorial that is corresponded with the constructed matrix F
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HeozarnasnenHas cekuyus

Teopema 2. A function F' is APN if and only if « - @’ does not belong to (G’ - @) for
all ' € F3, o’ # 0.

This theorem shows how to choose new coefficients oy ;...,a,+1; € TFy in the
construction from (1) such that an obtained function F' is APN. When n = 3,4 and 5
for APN functions that are EA classes representatives we obtained all the possible classes
of quadratic APN functions for 4,5 and 6 variables from the classification [2| and large
variety of classes for constructing from 6 to 7 variables.
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Kalgin K. V., Idrisova V.A. ON A SECONDARY CONSTRUCTION OF
QUADRATIC APN FUNCTIONS. Almost perfect nonlinear functions possess the
optimal resistance to the differential cryptanalysis and are widely studied. Most known
constructions of APN functions are obtained as functions over finite fields Fo» and very
little is known about combinatorial constructions in Fj. In this work we consider how to
obtain a quadratic APN function in n + 1 variables from a given quadratic APN function
in n variables using special restrictions on new terms.
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S-boxes are widely used in cryptography. In particular, they form important
components of SP and Feistel networks. Mathematically, S-box is a vectorial Boolean
function F' : Fy — ' that should satisty several cryptographic properties. Usually
n = m. In this work we study one-to-one property of a vectorial Boolean function
constructed in a special way on the base of a Boolean function and a permuation on
n elements. We count the number of all one-to-one functions of this type.

Keywords: Boolean function, vectorial Boolean function, S-bozx.

Let m € S, be a permutation such that 7"(z) = x. Consider some =z € Fy, = =
(z1,...,2,), define m(x) = (rq),. .., Tx(m)). Let f be a Boolean function in n variables, we
construct vectorial Boolean function F : FY — F% by the rule, already mentioned in [1]:

Fr(x) = (f(2), f(n(2)), f(7*(2)), ..., f(7" " (@))).

Let Ar, be a set of these functions. Define p(z) = (x,,x1,%2,...,24-1), le. p =
(n,1,2,...,n—1).

Proposition 1. Let 7 € S, such that 7"(z) = z, F, € A;,. Then Fi(n(x)) =
p Y(Fy(x)) for all x € Fy.

Further we consider that 7" (z) = z for all z € F3. Let 7 be an arbitrary permutation,
we define action of 7 on F} by the rule: if z € F} then x o m = m(x). This action splits F%
into orbits with respect to 7 . If x is in some orbit o, we call = a generator of o. We call
Ox(x) the orbit with respect to the action of .

Example: Let us give some examples of the orbits.

For n = 4 the set F} is divided into six orbits with respect to the permutation p:

0,((0,0,0,0)) | (0,0,0,0)

0,((1,0,0,0)) | (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0, 0, 1)
0,((1,0,1,0)) | (1,0,1,0),(0,1,0,1)

0,((1,0,0,1)) | (1,0,0,1),(1,1,0,0), (0, 1,1,0), (0,0, 1, 1)
0,((0,1,1,1)) | (0,1,1,1),(1,0,1,1),(1,1,0,1), (1,1,1,0)
0,((1,1,1,1)) [ (1,1,1,1)

We denote by O, ,, a set of all orbits with repect to the action of 7 on 3. Proposition 1
implies that for arbitrary F; € A, ,, values of elements of some 7-orbit g € ©, ,, are elements
of some p-orbit ¢ € O, since Fr(n'(x)) = p~'(Fr(x)). Let MF = {g € O, :|g] = k}.

Let U 0 Or, — O,, be a mapping defined by the rule: ¥p_,,(O(z)) = O,(Fr(x)).
Now we can formulate conditions for F} to be one-to-one in terms of Vg _,,.

YPabora BLITOMHEHA B paMKax rocysapcrsentoro saganus UM CO PAH (mpoext Ne 0314-2019-0017) mpu
noxgepxkke Poccuiickoro @ouga Pyumamentanbabix Uccnenoanuit (mpoexr 18-07-01394) u naboparopuun
kpunrorpadun JetBrains Research
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On one-to-one property of a vectorial Boolean function of the special type

Theorem 1. F, € A, , is an one-to-one function if and only if ¥p_,, is one-to-one. If
Vg, is one-to-one, then |V ,(g)| = |g|, for all g € O ,,.

As a consequence of Theorem 1 we get the following result.

Proposition 2. If for some k it holds |MJ,| # [M},| then the set of one-to-one
functions from A, is empty.

Theorem 1 means that in order to construct one-to-one functions F, € A, , we can
use bijective maps ¥,, : ©,, — O,, that satisfy |V, (g)| = |g| , where g € ©,,. Then,
depending on them, we can construct F; € A, such that Vp_,, = VU,,.

Proposition 3. Let ¥, : ©,, — O,, satisfy |V, (g)| = |g| for all g € ©,. Then for
all k € N the restriction of ¥,, on M} is a permutation of M} .

Now consider the case m = p. We define M} = M} . Consider an one-to-one function
U,, which satisfies |U,,(¢g)| = |g| for all g € ©,. Let us construct function F, € A,,, based
on ¥,. Let O € ©,, be an orbit of length k. If value of F}, for some z € O is determined
then value of F), is determined for all x € O, since F,(p"(x)) = p~"(F,(z)). Thus for every
Uk, n we are able to construct [, kIMal functions, where I, = {z € N : z|n}, and all of
them are pairwise different.

Proposition 4. For any k € N it holds Y, ¢+ |[Mf] = 2".

This formula allows us to calculate |[MF¥| for every k. There are always only two orbits of
length one, so we can calculate |MPF| for every prime k. Then we can calculate it for every
k. Therefore we get the number of one-to-one functions from A, via the following result:

Theorem 2. The number of one-to-one vectorial Boolean functions in class A,,, is
equal to [],, |MF[l- kML,
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We study a simple method of constructing S-boxes using Boolean functions and
permutations. Let m be an arbitrary permutation on n elements, f be a Boolean
function in n variables. Define a vectorial Boolean function F; : Fy — T}
as Fr(z) = (f(x), f(r(2)), f(z%(z)),..., f(#" 1(x))). In this paper we study
cryptographic properties of F;: such as high nonlinearity, balancedness, low differential
d-uniformity in dependence on properties of f and 7 for small n.

KiroueBbie cgioBa: Boolean function, wvectorial Boolean function, S-box, high
nonlinearity, balancedness, low differential é-uniformity, high algebraic degree.

S-boxes play the crucial role for providing resistance of a block cipher to different
types of attacks. The major reason for this that in classical and modern block ciphers
the main complicated and nonlinear layer is presented namely by S-boxes. Mathematically,
S-box is a vectorial Boolean function that maps n bits to m bits, or, n — m. Usually, n
coincides with m. It is well known that some special mathematical properties of S-boxes,
such as high nonlinearity, low differential uniformity, high algebraic immunity, etc. make
a cipher with such S-boxes be resistant to linear, differential, algebraic and other methods
of cryptanalysis. It is well known that cryptographic properties of a Boolean (vectorial)
function contradict to each other, [1], [2]. That is why we try to find vectorial Boolean
functions that reach a tradeoff between different cryptographic properties and obligated to
use mathematical methods (and not a direct computer search) for their constructing.

In this paper we propose a simple method of constructing S-boxes using Boolean
functions. Let 7 be an arbitrary permutation on n elements, 7 € S,. If = = (z1,...,2,)
is a binary vector then let 7(x) be a vector obtained as m(x) = (Zzq),. .., Tzn)). Let f be
a Boolean function in n variables. Define a vectorial Boolean function F} : F§ — F} as
follows

Fr(z) = (f(2), f(n(2)), f(7*(2)),.... f(7" " (@))).

In this paper we would like to study cryptographic properties of the vectorial Boolean
function F} in dependence on properties of the Boolean function f and the permutation .

Note that this way of constructing vectorial Boolean functions was already mentioned
before but only for obtaining some examples. Thus, A. Udovenko proposed a vectorial
Boolean function of this type in 5 variables with the maximal possible algebraic immunity
3. It is a unique known solution of the previously unsolved problem from NSUCRYPTO
2016 [3]. So, functions F; can have good crypto properties.

!The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-
1613 with the Ministry of Science and Higher Education of the Russian Federation and Laboratory of
Cryptography JetBrains Research.

288



D. A. Zyubina, N. N. Tokareva

Separately, we consider the special case of a permutation. Let A, be the set of all full
cycle permutations for n elements. For example, A4 consists of 6 permutations: (2,3,4,1),
(2,4,1,3),(3,1,4,2), (3,4,2,1), (4,1,2,3), (4,3, 1, 2) presented as vectors or (1234), (1243),
(1342), (1324), (1432), (1423) in cyclic representation.

Let us recall definitions of several cryptographic properties.

A Boolean function f in n variables is called balanced if it takes every value (0 or 1) the
same number of times [4]. A vectorial Boolean function F' : F} — 7 is balanced if it takes
every value of F} equally often 2] .

Let A, = {{a,z) b : a € F},b € Fy} be the class of all affine Boolean functions
in n variables [5|. The nonlinearity nl(f) of a Boolean function f in n variables is the
Hamming distance between f and the set of all affine Boolean functions in n variables [5] .
The nonlinearity nl(F) of a vectorial Boolean function F' is the minimal nonlinearity of all
its component Boolean functions:

nl(F) = min nl(F,) = min d({v, F), Ay) = min min d({v, F), 9),
where v # 0.

The algebraic degree of a vectorial Boolean function is the maximal algebraic degree of
its component functions [2]. Note that for our construction deg(F) = deg(f) for an arbitrary
7, since all coordinate functions of F' have degree deg(f).

For a vectorial Boolean function F' : F§ — FZ let 0p denote the maximal number of
solutions for the equation F(x) @ F(x @ a) = b while a, b run trough F% and a is nonzero.
Then F is called differential § p-uniform, see for instance [2]. Note that the minimal possible
value of 0, where F' maps from F} to 7 is 2.

We consider cryptographic properties of I} for small n in relation to f and 7.

All of the following propositions are obtained via computer search.

1. Casen=2

e For any permutation m € S5 there exists a Boolean function f in 2 variables such that
dr, = 2. Moreover, such Boolean functions are constructed as f(x) = x1xo@®ayx1 HasrsDag,
where ag, a1, ay € F5.

2. Casen=3

For any Boolean function f in 3 variables nl(f) < 2.
e For any permutation m € Aj there exists a balanced Boolean function f in 3 variables
such that vectorial Boolean function F is balanced.
e For any permutation m € Aj it holds nl(F;) = nl(f). Note that if nl(F;) = 2, i.e. is
maximal, then dr = 2, i.e. is minimal possible. The number of such functions f is 48.
e For arbitary permutation m ¢ A and Boolean function f in 3 variables dp, > 4.

3. Casen=14

Let us introduce the notation for permutations from the set Ay: m = (2,3,4,1), m =
(4,1,2,3), m3 = (2,4,1,3), mqy = (3,1,4,2), m5 = (3,4,2,1), w6 = (4,3,1,2). Note that
7T1_1 = 7T2,7T3_1 = 774,7r5_1 = Tg.

e For any permutation 7 € A} and a balanced Boolean function f in 4 variables such that
0p. = 2, F is not balanced.

e For any permutation 7 € A} there exists a Boolean function f in 4 variables such that if
0p, = 2 and nonlinearity of f and Fy are the same then 0r , = 2. Moreover, nonlinearity
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of F,-1 and f coincide.
e For any permutation 7 ¢ A} for arbitary Boolean function f in 4 variables 0r, > 4.
Based on the results, we suppose that it is possible to construct vectorial Boolean
functions in the arbitrary number of variables with cryptographic properties good enough
using our simple construction for necessary Booleans functions and permutations.
We plan to use our program for studying vectorial Boolean functions with larger number
of variables, now this work is in progress.
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O JIN®PEPEHIINAJIAX JJIA MOINPUKAIINN ITTNP®PA SIMON HA
OCHOBE CXEMBI JIASd — M>CCUt!

A.A. Benoycosa, H. H. Tokapesa

E-mail:

Paccmarpuatorces 610uHbIH wrepaTuBHbIi mmdgp Simon 32/64, ocHOBaHHBIH Ha ceTn
DeticTens, u ero MoauduKarmy Ha OCHOBE cxeMbl Jlasg — Maccu. Tlonydensr orenku
BeposiTHOCTel nuddepeniinanos 12 payHI0B UCXOIHOTO THdpa U ero MogupUKaImii.

KirouesBbie caoBa: cxema Jlaa — Moaccu, cemv @eticmenn, JupdepenyuarvHviil
KPUNIMOGHAAUS.

B pabore paccmarpusaiores 6109HbIe HTepATUBHBIE MU(PHL, OCHOBAHHBIE Ha ceTn Deii-
cresist (puc. 1) n Ha anprepHaTuBHON cxeme — cxeme Jlast — Macen [1] (puc. 2). s nccie-
nosanust BeIOpan mudp Simon 32/64 |2|, ocHoBauubiii Ha cern DeiicTesis, u MOCTPOEHBI 1Be
ero MoJau(UKAIUK ITOJCTAHOBKOU cxeMbl JIag — M»accu na mecto ceru @eiictens. [lomyue-
HBI OLIEHKH JIJIsI BEpOATHOCTeH AudpdepeHnnaioB, IOCTPOEHHBIX i 12 payHI0B UCXOJHON
1 MOAUMUIMPOBAHHBIX Bepcuit mmudpa Simon 32/64. Ouenka mas BeposTHOCTH Audde-
pernumasos st mudpa Simon B3sita u3 paboTsl 3], rae nomydeno, yro Js Simon 32/64

MaKCHMaJibHas BEPOATHOCTH Juddepeniiuasia nocjae npoxoxkaenus 12 payHaoB cocTaB/isier
2736,

> ] (= | I
AR
<
Y
[ F
Y Y
e w1
L L
Y Y
| Yo | | *r | Y. | | ¥r |
Puc. 1. Cerp @eiicrens Puc. 2. Cxema Jlasg-Macecn

Onun payua cxembr Jlas — Maccn B €6 opuruHaabHOM BUJIE 3AMHCHIBACTCS Kak (Yr, Yr) =
= (xp ® F(xp ® zgr),xr @ F(xp ® TR)), 1 B 970M €CTb CYUIECTBEHHBIA HEJIOCTATOK: JIJIsi
1106010 BXOJA (21, TR) BBIIOIHSAETCS COOTHOIIeHNE T, TR = Y1, DYr, T1€ (YL, YR) — BBHIXOT
paysa. B pabore [4] ormedero, 9TO JJIs1 yCTPaHEHUS 3TOTO HEIOCTATKA K CXeMe HEOOXOMMO
JI00ABHUTDH II€pEeCTaHOBKY-0pTOMOPhU3M 0.

Ilycrs 0: Z5 — 7% —TepecTaHOBKA Ha Z4; 0 HAa3BIBALTCA OPMOMOPHuUIMOM 25, ecan
o @ [ —TakyKe IepecTaHOBKa Ha Z5, rje | — ToXKJecTBeHHas IepecTaHOBKa. lorna oiauH

!Pabora Bemonnena B pamkax rocymapcrsentoro saganus UM CO PAH (mpoext Ne0314-2019-0017)
upu nozyepxkke POOU (upoexr Ne18-07-01394) u naboparopuu kpunrorpacduu JetBrains Research.
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payH[ cxeMmbl 3anucbiBaercss Kak (yr,yr) = (o(xp @ F(xp ® zg)),xr ® F(zrp ® zR)), a
pasuuna rekcroB yr O ygr = o(xp ® F(xp @ xg)) & (xgr & F(rp & xR)).

[TpoBesieHO cpaBHEHHe OIEHOK BeposiTHOCTEl Tuddepeniuanos |5 opuruHaabHON cXe-
MbI JIag — M»accu u cxembl ¢ gobaBiaenueM opromopdusma. g sToro Hanmucana mporpam-
Ma, KOTOpasl peaan3yeT mepedop BcexX pa3sHOCTel OTKPHITHIX TeKCTOB. Ha KaxK1oit ureparmu
g pa HaXOIUTC OOUH 13 Hanbo/iee BePOATHBIX BBIXOIOB HA PAyHIE ¢ MOMOIIBIO MOCTPOe-
HUS CTPOKH TabJ 1Bl JudDepeHInaIoB, COOTBETCTBYIONMEH BX0HOM pa3HocTu. lasee Haii-
JAeHHble BEPOATHOCTH MMEPEMHOZKAIOTCA JJId IMMOJIYIYCHU A OIEHKHN MaKCHUMAaJIbHOM BEPOATHOCTHU
nuddepeHImaion.

Bruto monydeno, uro mocie 12 payHIOB OIlEHKA MAaKCHMAJIbHOM BEpOATHOCTH audde-
peHnuaIa st MoJepHu3npoBannoro mudpa Simon32/64 6e3 qobasiaenus oproMopdmamMa
coctasiger 2724 a ¢ mobapiaenuemM opToMopdU3Ma HAXOIUTCA B HHTEPBaJe Mex1y 2724 n
2793,

Taxum 00pa3oM, OlEeHKAa MaKCHUMAaJILHOM BeposaTHOCTH Jaudpepeniinaia MOJIepHU3AINH
mudpa Simon 32/64 6e3 mobabenns oproMopdu3Ma BhIIlle, 9eM Y OPUTHHATBHOrO miudpa.
KoMmnboTepHble BBIUACICHUS Ha 9aCTH JAHHBIX MO3BOJIAIOT IIPEINOI0KATH, 9TO MOIEPHU-
3aIHs ¢ OpTOMOPMU3MOM MOKET OBITH 0OJIee YCTOWYIUBOM, UeM OpUTHHAJBHBIN Iudp u
MoJjiepHu3aIus 6e3 oproMmopdusma.
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Belousova A. A., Tokareva N. N. ON DIFFERENTIALS FOR THE MODIFICA-
TION OF THE CIPHER SIMON BASED ON THE LAI — MESSI SCHEME.
We consider the block iterative cipher Simon based on the Feistel network and its modifica-
tion based on the Lai -— Messi scheme. Received estimates of differentials of the considered
ciphers are compared. The results show that after 12 rounds, estimate of the maximum
probability of a differential for the modified cipher Simon 32/64 without adding an ortho-
morphism is 2724, and with the addition of orthomorphism is between 2724 and 273, while
the estimate of maximum probability for the original version is 2736,
Keywords: Lay — Massey scheme, Feistel network, differential cryptanalysis.
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ITIONCK KPUIITOTPAOPNYECKHUNX BYJIEBBIX CDYHKI_[I/Iﬂ C
ITOMOIIIBIO SAT-PEIIIATEJIEN !

A.E. loponnn, K. B. Kanrun

Hosocubupcruti Tocydapecmeennuili Yrnusepcumem,
aabopamopus kpunmozpaguu JetBrains Research, 2. Hosocubupcrk, Poccus

E-mail: artem96dor@gmail.com, kalginkv@gmail.com

B nmammoit pabore mpeacTaB/ieH HMOAXOI K PEIIEHUI0 HEKOTOPBIX KPUIITOIrPadUIECKIX
3aj1a4, OCHOBAHHBIN Ha WX CBEICHUN K KJACCHYECKON 3a/1a9e O BBIIOJTHUMOCTH W HA,
mocaeaytoreM ucrmosab3oBannn SAT-pemareneii. [IpeacrasmeHo mocTpoeHne HECKOThb-
KuxX (HOPMYJI, OTPEAENSIONNX YCJAOBUS B3aUMHON ogHO3HAaUYHOCTH U nudpdepeniu-
AJILHOM PABHOMEPHOCTH BEKTOPHOW Oy/IeBoit (DYyHKIWM, a TakKe MpoBepsommx KA-
SKBUBAJIEHTHOCTD JIBYX OVJIEBBIX (PYHKITHIL.

Kuouessie cioBa: SAT-pewamenu, xpunmozpagdua, 6yaseew, gynryuu, LA-sxeusarenm-
HOCMb.

B nacrosiinee Bpemst SAT-peraren ucnoab3yoTed JIJis PEIIeHns] KPUITOTpADUIeCKUX
3a/1a4 pasHoro tumna. Hampumep, 11d mpoBeeHnst KpUNTOAHATN3a ACUMMETPUIHON KPUTI-
tocucrembl RSA [1], cemeiicra mmudpos Trivium [2]. B [3| 6bi1a npeacraBiena romomopd-
Hasl KPUIITOCUCTEMA C OTKPBITHIM KJTI090M, ocHOBanHas Ha SAT-3a1a1e. Takke ¢ mOMONIHIO
SAT-pemareseil ycremno IpoBOIMIACH TPOBEPKA 0OPATUMOCTU U3BECTHBIX BEKTOPHBIX OY-
7eBbix GyHKnuii [4].

B nammoit pabore mpemiaraercs ucnonb3oBanune SAT-perrarerneit B 3agadax mowuc-
Ka Kpunrorpaduiyeckux Oy/eBbiX (PyHKIMI U TPOBEPKH IKBUBAJIEHTHOCTH JIBYX OyJIeBbIX
dyuxmit. g nonydenns zadopa OyieBbiX opMy/T OBLIH HCIOJIb30BaHbI CJAEYIONHE 0~
HATAA U CBOHCTBA.

Onpenenenne 1. Bekrtopnas Oynesa dyuknua F' : Z) — Z5 Ha3bIBaeTCSI 63aAUMHO
001031a4H0t, eCIU OHA HHBEKTHUBHA WU CIOPHbEKTHBHA, TO €CTh BBINOJHSETCS OIHO U3
CJAEAYIONIUX YCJAOBUIA:

1) Vo' € Zy Yo" € 7 : 2! # 2" — F(2') # F(a"),
2) YyeZy 3x € Zy - F(z) =v.

Onpenenenne 2. Bekrtopnas OyneBa byukmusa F' : Z§ — Z5 aBiagerca dudgdepen-
YUANDHO O-PABHOMEPHOT, €CJIH IS JTI000ro HEHYJIeBOro a € Z§ W Upou3BosbHOTO b € ZY
ypasuenne F(x) @ F(x & a) = b nmeer ne 6osiee § permeHnii.

Onpenenenne 3. Bekropubie Oysessl dyuknuu ' u G, geiicrBytomue u3 Zy B 74,
Ha3biBaloTCs FA-skeusasenmuvimu, ecan suimoasiercs: G = BoFo A+ C,tne A, Bu C
— adpPpunnpie QYyHKIUH.

YenoBus, GUrypupyionme B JaHHBIX ONpele/eHuax, npeacrasiadgiorcsd B Buge KHO u
nogaorcsa Ha Bxoa SAT-pemarens. B pesyabrare ero paboThl TPOUCXOIUT O3HATHNBAHIE TIe-
PEMEHHBIX TAKUM 00pa3zoM, 4ToObl (POPMYJIbI ObLIM UCTUHHBIMHU, & CJIEI0BATE/IHHO yCJIOBUS
BBIITO/THSLTHCD.

!Pabora srmonnena npu nopaepxke Poccmitckoro dbomga byHIaMeHTaIbHBIX HCCTeI0Banil (TPOeKT
18-07-01394) u naboparopuu kpunrorpacduu JetBrains Research.
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A. E. loponun, K. B. Kanrun

BekTopnbie 6y1eBbI (DYHKITUN OBLIH 3aKOAUPOBAHBI B ABYX HPEACTAICHUIX IPU TOMOIILH
COOTBETCTBYIONIUX OYJIEBbIX HEPEMEHHbIX.

foy =1 < F(x)=y, tme z,y € Z§ — pa3peKeHHOe IPeCTABJICHHE.

foor=1 <<= Fi(z)=1,tne k=0,...,n—1, x € Z} — WIoTHOE HPEICTABICHHE.

OrnpeiesieHs BBIIIE ONPEIEIAIOTCs CJIeIYIOMUMA (POpMYyTaMH.

Teopema 1. MnoxkecTBO IlepeMeHHBIX f, , KoAupyeT (dpyHkuuio F' Torna u ToJbKO TO-
r71a, KOraa ciaeayiomast hopMy/ia SaBasIeTCsT NCTHHHOMN:

FS(f) /\ /\ fxy vfxy“ /\ \/ fx,y (1)

ergL y/7y//ezn xezg yezn
y/<y//
Teopema 2. MHOXKeCTBO NepeMEHHBIX f;, KOAUDPYeT B3aUMHO OJHO3HAYHYIO (yHK-
IUIO TOTJIa M TOJbLKO TOTJA, KOTJIa BBIIOJHAIOTCH ycjaoBus Teopemsbl 1, u cieayionias
dopmyia sIBAsIeTCS UCTUHHOM:

Ps(f) /\ /\ fz yvfz” /\ \/ f:cy (2)

yeLy o'z €Ly yeELy x€ly
' <z

Teopema 3. Ilepemennsie fbg,,, 1 fby ), KOAUPYIOT B3aUMHO OZHO3HAYHYIO BEKTOD-
HyI0 OysieBy (DYHKIIHIO TOT/a M TOJBKO TOIHA, KODAA CAEAYIONas pOpMy/Ia sBISETCS HC-
TUHHOI:

PR (f0.foq) = /\ '/ f0auyi A SoPP(fb, fbg). (3)

T,yeLy k

Teopema 4. Ilepemennsie f,, u fb, ) KOTUPYIOT B3aUMHO OJHO3HAYHYIO BEKTODHYIO
OyseBy (DYHKIIMIO TOTJIA U TOJIHKO TOTJA, KOTJIA CJaeyIomas (GopMyia saBadeTcs NCTUHHO:

sparse f fb /\ \/ fﬂf Y N SpDen(f fb) (4)
T yF#x
Teopema 5. Orobpaxkenue F' : Z7 — 73 sasiaserca APN-dbyukimeit Torma 1 ToIbKO
TOI/IA, KOIJIA BBIIOJIHAIOTCA yeaoBust Teopembr 1, n caepyronias (popmysia sBIsieTCsl HCTUH-
HOI:

APNS(f,d) =DerS(f,d) A [\ (drapV dyap). (5)

b£0,a7£0,
TYF£T

Teopema 6. llepemenusie fby, fbqrroar B dbqyy qr KomupytoT APN-dbynkmmio To-
r71a ¥ TOJIBKO TOIJa, KOTIa Caeayiomas (popMyJIa SBASeTCsT HCTUHHOM:

APNP(fb, fbg, dbg) = SoPEq®(fbq, dbg) A SoPP(fb, fbg) A [\ \/dbqwak (6)

a,xr,y

Teopema 7. llepemenusie A, ;, B, ;, C;;, a; n ¢; komupyior EA-3KBuBaIeHTHOCTD Oy-
JIeBBIX DYHKIUM, ecau caeayionasa hopMya saBasdeTcss KCTHHHOM:

A(fbogh) = N\ (MatVec(y, A, z,a) A MatVec(r, C, z, ¢c) A MatVec(z, B, gby, 0) A

x

PRa(y:92) A PRz, 20) ) A SoPRA(fb,2,7),
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lNouck kpuntorpagpuueckux bynesbix pyHkymMii

rne MatVec(y, A,x,¢c) =1 <= y=A-2®c, SOPRA(f,2,7) = /\(fbxk Vozp VTg) A
.k
(fouk VZEVTE) A (fbog V2 V1e) A (fber V ZE V).

B nmammoit pabore mpeacraBien Habop OpMYT IS MOUCKA KPUNTOTpadUIECKUX
dyukmuit u nposepkun KA-skBuBasenTHOCTH ABYX Oy/eBbix (yukmmit npu momorn SAT-
pemraresneii. Bouio onmcano moctpoerune GhopMys sl B3aUMHON OHO3HAYHOCTH, nudde-
PEeHIUAJIBHON PABHOMEPHOCTH, & TakzxkKe KA-35KBUBAaJIEHTHOCTH JIBYX BEKTOPHDLIX OYJIEBBIX
dyukmumit. Bxoguoit dgaitn aaa SAT-perrarens remepupyerca Ha ocHOBe 5TuX (popmyqt. [lo-
JydeHHbiit Habop (hopMysT Tak:Ke MOXKHO UCIOIB30BATH JIJIsI TECTUPOBAHUS PAOOTHI HOBBIX
SAT-pemaresieii, CO3JaHABIX I KPUTTOIPADUIECKUX 33,1a4.

JINTEPATYPA

1. Qeopodnuxos FO. 0. KombunupoBantnasi araka Ha a/aropurm RSA ¢ ucuoab3oBaHueMm sat-
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Computation: 8th International Conference Italy: RC, 2016. C. 322-337.

Doronin A. E., Kalgin K. V. CONSTRUCTION OF CRYPTOGRAPHIC BOOLEAN

FUNCTIONS USING SAT-SOLVERS. In this paper we propose a method of solving
some cryptographic problems based on translation them into SAT-problems and applica-
tion of SAT-solvers. We introduce construction of several formulas defining conditions of
one-to-one property and differential uniformity of vectorial Boolean functions and formulas
for checking extended-affine equivalence for two vectorial Boolean functions.
Keywords: SAT-solvers, cryptography, Boolean functions, EA-equivalence.
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KPUIITOAHAJIN3 BA30BOM BEPCUU KPUIITOCUCTEMEI C
OTKPHITHIM KJIFOUOM, OCHOBAHHOI HA CJIOXKHOCTU
PEIIIEHIISI CUCTEMBI IIOJIMHOMUAJILHBIX YPABHEHUII B
IEJIBIX YNCJIAX!

E. B. 3apaaumuuna

Hosocubupcruti 2ocydapcmeennnitl yrusepcumem
Hnemumym mamemamuru um. C. JI. Coboresa
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B pabore npencraBiens cBefeHus 0 KpunToanain3e 6a30B0i BEPCUU KPUIITOCUCTEMBI
C OTKPBITBIM KJIHOYOM, OCHOBAHHON HA CJIOXKHOCTHU PEIEHUs CUCTEM TIOJIMHOMUAJBHBIX
YPaBHEHUI B IIEJIBIX 9nCIaX. ABTOPOM pabOThl ObLI pa3paboTaH ajrOpuTM aTakh Ha
OCHOBE TI0/TOOPAHHOIO OTKPBITOTO TEKCTA, [IO3BOJISIONTUHN MOJIYIYUTh HAOOP MATPHIL, KO-
TOpBIE MOTYT UCIO/IB30BATHCS B KAUECTBE CEKPETHOTO KJI0Ya. BhiIo obHapyxKeHo, 9To
HabOp TAKUX MATPWUIL HE eIMHCTBEHHBIN, & TAKXKE BHISIBIEHBI HEKOTOPHIE CBOUCTBA DTUX
HabOPOB.

KumroueBsbie cJjioBa: omnpmmuﬁ KA, Kpunmoarasus, nocimrearinosas Kxpunimoezpa-
¢Uﬂ, NOAUHOMUGADHDIE YPABHEHUSA.

B 2016 romy the National Institute of Standards and Technology mpencraBua moxstan
o HazeaumeMm Report on Post-Quantum Cryptography [1], B KoTopoMm mosaraer, 94To mpu-
ILIO BpeMd HOATOTOBUTHCS K MEPEX0ly Ha KBAHTOBO-YCTOMYHUBYIO KPUITOrPagHUIO, TAK KaK
HEKOTOPLIE 3aJa49H, JICXKAIIHE B OCHOBE MCIOIL3YIOMIMXCS HA IIPAKTHKE KpHITOrpadude-
CKHUX aﬂl—‘OpI/ITl\/IOB7 MOFyT 6bITb peHIeHbI KBAaHTOBbBIMUAU KOMHBIOTepaMI/I.

B ¢Bs31 ¢ 9TUM aBTOPOM HACTOsAIIEH PADOTHI 1 COABTOPAMU ObLIA MPEANPUHATA MOTBITKA
CO3/IaTh HOBBIN AJTOPUTM TU(POBAHUA JTAHHBIX C OTKPBLITHIM KJIIOYOM, OCHOBAHHBLIN Ha
PEIeHIH CHCTeMbI OJTHOPOIHBIX MOJTMHOMHAIBHBIX YPABHEHUH B TebIX duciax |2]. KpaTko
OIUIIEM OCHOBHOM NPUHIMAII PAOOTHI.

Nmeem oTkphiTeiil TekeT P = (Py, ..., P,)T, rme P; — nenoe aucao ot 0 go 2° — 1 ga
HEKOTOPOro moytokuTensnoro b. Iycrs Ky = {m, A, B}, K, = {f(2)}, tne
— M = MyMy...Mmy, — TEJOTUCTEHHBIE MOMYIb, Takoit, aro m > 20, a ¢(m;) mod 3 # 0

JIIsT JTI000T0 M)

— A n B — neno4ucJeHHble MATPHIBL 1 X 1

— f(x) = (fi(x),..., fulz))?, toe fi(r) — mOIMHOMBI OT BEKTOpa IePEMEHHBIX T =
(21,...,2,)T, BHIUECIEHHBIe B TPHU 1Mara MO MOJY/IIO 1M
1) u(z)=Axx;

2) s(z) = ((u1(2))’ ..., (un(2)?));

3) f(z) =B x s(x).

[HIudppreker C = (C4, ..., C,)T Boruncagerca kak C = f(Py, ..., P,).
Jlannasi pabora mOCBSIIEHA KPUITOAHAIN3Y OMUCAHHON CUCTEMBI.

! Pabora BBIMOIHEHA, TTpH MO AeprKKe MaTemarmaeckoro Llenrpa B AkameMroposxe, coramrenue ¢ MuHn-
CTEePCTBOM HAYKH U BbICIiero obpasoBanus Poccuiickoit @emepariun nomep 075-15-2019-1613 u 1aboparopun
kpunrorpadun JetBrains Research.
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ABTOpOM paboThl OBLIT paspaboTaH aJrOPUTM aTaKH Ha OCHOBE MOJI0OPAHHOIO OTKPHI-
TOr'o TeKCTa, KOTOprfI IIO3BOJIAET IIOJIYyYIUTh Ha60p MaTpull — 3KBHBaJICHTHbIX KJII04Yen cu-
CTEMBI, KOTOPBHIE MOTYT HCIOJIb30BATHCS B KAYECTBE CEKPETHOrO KJIKYa.

Habop nmosimHOMOB, HCIIOIB3YIOMKICA B KaUecTBe OTKPBITOrO KJIio4a B 6a30BOi BepCHH,
IMeeT CTPOro OHpejeseHHBbIH BUI. PaccMoTpuM oOIIMit BHI CHCTEMBI IIOJHHOMOB Ha IIPO-
CTefiIeM mpuMepe ¢ IBYMS MepeMeHHBIMH.

[Iycrs maTpunsl A u B uMeior cjaeayommui BuL;

A= aj; aig ’ B:(bll blg

Q21 A2 ba1  bao
Tora OTKPBHITHIHT KJII0Y BBITJISIIUT TaK:

w9(ag b + agibia) + 175(3a7, a19011 + 303, a9b12)+
+ 2133 (3a11aT5b11 + 3as1a3,b12) + x5 (afybin + adybia) =

3 2 2 3
= T] + QX1To + A3T1X5 + Ty

3(,3 3 2 2 2
2 2 2 3(,3 3
+ x1x2(3a11a12b21 + 3@21@22522) + ZL‘Q((lmel + a22b22) =
3 2 2 3
= Q5T + QgT1T2 + Q7T1T5 + QgTs.
st HaXOXKJIeHUsl IKBUBAJIEHTHBIX KJ/II0Yell HeOOX0/MMO BbIPpa3uTh KO PUIMEeHTbl 10-
JIHHOMOB OTKPBITOrO Kjto4a (1) depes ssemenTsl MaTpuii, A 1 B u pemuTh cucreMy cpab-

mennii (2). Habop pemrennit cucremsl cpasuenuil (2) sapisiercs HaOOPOM KBHBATCHTHBIX
K/II09eli KpunrocucTeMsl. Vmeem

ad by +albis =a; (mod m)
303 a19b11 + 3a3,a95b12 = a; (mod m)
3a11a7,b11 + 3ag1a3,b10 = a3 (mod m)

atybyi + alybio = ay  (mod m)

a3 bor + aj by = as  (mod m)
302 a19ba1 + 3a3,a09boy = g (mod m)
3a11a%5ba1 + 3a21a3,boy = a;  (mod m)

aybor + a3obye = g (mod m).

YpaBHEHHs TAKOTO BUJIA MOXKHO TOCTPOUTD JIIsI JIIOOBIX 12 U M, VAOBIECTBOPLAIONIHNX YCI0-
BUSM JIJIsl IAPAMETPOB KPUIITOCUCTEMBI.

Tak kak cucreMa cpaBHEHUI HeJUHEHHA W HE CYIIECTBYET aJrOPUTMA, MO3BOJILIONIErO
3pEKTUBHO peraTh TaKue CHCTEMBI, PEIeHNe TTPOU3BOIUTCS 1TepebOPOM.

Mexk 1y MaTpunaMu Takzke ObLJIA OTMEUYEHBI JJUHEHHbIe 3aBUCUMOCTH.

YrBepxkaenue 1. Jljig onucanHO# KPUIITOUCTEMBI C JIIOOBIMU 1 U M, YJIOBJIETBOPSI-
IONAMY YCJIOBUSAM, MOYKHO BBIPA3UTh KOI(MDMUIIMEHTH MOJIUHOMOB OTKPBITOI'O KJIIOYa 4e-
pe3 3JEeMEHTBI MaTPUIL CEKPETHOTO KJII0Ya W MOJYYUTH CUCTEMY CPABHEHUH IO MOLYJIIO 1M.
JIroboe perreHne 3TOH CUCTEMBI CDABHEHHI SIBJISIETCS IKBHBAJIEHTHBIM CEKPETHBIM KJIIOUOM
KPUITOCUCTEMBI.

Vreepxkaenune 2. [na moboro K., = {A, B,m}, yI0BIeTBOPSIONIEIO yCIOBUAM
JIJIST TApaMeTPOB KPUIITOCUCTEMbI, CYIITECTBYIOT SKBUBAJIEHTHBIE KJII0UH, 00pa30BaHHbIE BCE-
MU BO3MOXKHBIMH TI€PECTAHOBKAMH CTPOK MATPHIIBI A ¥ COOTBETCTBYIONIUX CTOJIOIOB MAT-
punpl B. YTBep:KIeHHe BEPHO JJId JIOOBIX 7.
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Kpuntoananus 6a3080ii BEPCUM KPUMTOCACTEMBI C OTKPLITHIM KJIHOHOM, OCHOBAHHON Ha C/IOXHOCTY
PEeLUEHNST CUCTEMBbI NONNHOMMUATbHbIX YPaBHEHWI B LieNbIX YUCaaxX

B Tabure 1 ykazanbl HEKOTOPBIE KCIIEpUMEHTAIbHbIE JaHHbIe. ODO3HAUYNM KOJIUIECTBO
SKBUBAJIEHTHBIX KIouell K.,, a KOJIMIecTBO BCeX BO3MOKHBIX HAOOpoB MaTpun A n B 1j1s
KOJIMYECTBA MEPEMEHHBIX 1 U MOJYIsA M — Mipiq;.

Tabauwma 1
KoimyecTBO 3KBUBAJICEHTHBLIX KJIIOYEil

nim Keq Mtotal Keq/Mtotal
2 |11 ] 200 | 214 358 881 9,3¢~"

2 | 17| 512 | 6 975 757 441 7,3e78

2 123|968 | 78 310 985 281 1,278

2 |29 | 1568 | 500 246 412 961 3,1e7?

2 | 41 | 3200 | 7 984 925 229 121 4e~10

2 | 53 | 5408 | 62 259 690 411 361 0,1e~10

2 | 59 | 6728 | 146 830 437 604 321 4,5e~ 1
3|11 6000 | 5559 917 313 492 231 481 | 0,1e~1°

N3 sKcnepuMeHTAJbHBIX JAHHBIX MOYKHO IPEJIOJIOKHUTh, YTO KpUnTorpaduieckas
CTOMKOCTH paccMaTpPUBAEMOM CHUCTEMBI pacTeT ¢ yBeJIWYeHWeM MOy W KOJUYecTBa Iie-
PEMEHHBIX.

JINTEPATYPA
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Zavalishina E. V. CRYPTANALYSIS OF THE BASIC VERSION OF A PUB-
LIC KEY CRYPTOSYSTEM BASED ON THE COMPLEXITY OF SOLVING
A SYSTEM OF POLYNOMIAL EQUATIONS WITH AN INTEGER SOLU-
TION. The paper provides information about cryptanalysis of the basic version of a public
key cryptosystem based on the complexity of solving a system of polynomial equations with
an integer solution. The author of the theses developed the chosen-plaintext attack algo-
rithm, which allows to obtain a set of matrices that can be used as a secret key.

It was found that the set of such matrices is not the only one, and also some properties
of these sets were revealed.
Keywords: public key, cryptanalysis, post-quantum cryptography, polynomial equations.
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B pabote npeioykeH HOBBIA METOII, HO3BOJISIONINI peluTh IpobeMy MPUBATHOCTH
uHMOPMAIUN B OTKPBITHIX OJIOKUYEHH-CUCTEMAX C HMCIIOJH30BAHUEM KpHUNTOrpadutde-
CKOr'0 IIPOTOKOJIa JOKA3aTeIbCTBa ¢ Hy/1eBbIM pasriaamenueM zk-SNARK. Ipenmoxken-
HBIII METOJ| pPeajM30BaH B BUJE KPUITOIPA(DUUECKON cXeMbl Ha OCHOBE OMOJIMOTEKH
libsnark u unrerpuposan B Mmogudunuposannbiii Ethereum C+-+ kiuenrt.

KoroueBble cJyioBa: mendepoi, pacnpedesermvie cucmemyt, 0a0kwetn, 0oKa3amens-
cmeo ¢ nysesvim pazesawenuem, zk-SNARK, naamgpopma Ethereum.

Ha cerogusmmmuii jienb OOJIBIMIUHCTBO KOHKYPCHBIX 3aKYIHMOK U 3JIEKTPOHHBIX TOPrOB
[IPOBOJIUTCS Yepe3 CIIeNUaIN3UPOBaHHbIE HH(MOPMAIIMOHHBIE CUCTEMBI. B Takux cucremax
YYIACTHUKH JIOJIZKHBI OBITH YBEPEHBI B TOM, YTO HUKTO HE UMEET BO3MOXKHOCTU HAPYIIUTH
[IpaBU/Ia MPOBEIEHNS TEeH/Iepa WK TOJTYyIUTh JIOCTYT K KOH(MUIEHINAIbHON nH(MOpMAaIUN.

Pemurs npobiiemy j1oBepusi Ipu IPOBEJIEHUN TEHJIEPOB 1M03BoJIsgeT Os1ok4eiin. OmHako,
[IPU MCIIOJIb30BAHUN STOM TEXHOJIOTHH BCE JIAHHBIE COXPAHAIOTCS B OTKPBITOM BHJIE W JIO-
CTYIHBI BCEM ydYacTHUKaM. B ciiydae ¢ TeHJepaMy OTKPBITOCTH WHMOPMAIUA HAPYIIAET
TaliHy 3agBOK, KOTOPasd JIOI2KHA OBITH COXPAHEHa JO OKOHYAHMS dTala 3alpoca MPeJJIozKe-
HUMN.

Panee ObL1a paspaborana OJIOKUYeH-cUCTEMa JJIsi IIPOBEJIEHNS TEHIePOoB ¢ InudpoBa-
HreM 3asiBoK [1|. OjHAKO TaKol MOJX0/] HE TIO3BOJIAET IPOBEPUTH KOPPEKTHOCTH 3alud-
POBAHHON 3adBKM B MOMEHT ee mojadu. EIne oJHuM HEeJIOCTATKOM SBJISIETCS TO, UTO BCE
YYIACTHUKHM MOI'YT HaOJII0JATh (PaKT MOJauN 3asBKU 0JIb30BATE/IEM.

B mannoit pabote mpejjioKeHa u peajgu30BaHa CUCTEMa TEHJIEPOB, KOTOPas yJIOBJIETBO-
pseT KpuTepusaM 6€30IIaCHOCTH, OTKPBITOCTH M KOH(MUIEHIINAIbHOCTH. Borpoc joBepus pe-
ITIEH C TIOMOITHIO TEXHOJIOTHH OJIOKYEH, & COKPBITHE TPUBATHON HHMOPMAIIUN — C TIOMOIIIHIO
AJICOPUTMOB JIOKA3aTETbCTBA C HYJIEBBIM Pa3TJIAIIIEHUEM.

Paszpaborannas cucrema ocnoBana na miardopme Ethereum. Besa kiouesas nundopma-
I O TeHJIepax coxpaHsgeTcd B OJIOKUeiHe, a TPOBEPKA ITPABUJI U OTCJIEKUBAHUE BBITIOJIHE-
HUsI YCJIOBUI yIACTHUKAMHU Pean30BaHbl B BUJIE KOJ/Ia CMapT-KOHTPAKTOB.

B pabote mpe/iyiozkeH HOBBINT METOJ COKPBITHS MPUBATHON MHMOPMAIUN B OTKPBITHIX
OstokueitH-cucremax. Pa3paboTaHHbIl METOJI OCHOBAH Ha KPHUITOrPa(UUecKOM IIPOTOKOJIE
HEMHTEPAKTUBHOIO JI0KA3aTe/bCTBA 3HaHUs ¢ HyJeBbiM pasriamenneM zk-SNARK [2] u
[IO3BOJISIET CKPBIBATH KOHMUICHIINAIbHYO HH(MOPMAIIUIO HA STAIlE TOIaYN 3asIBOK.

' PaGora BBITIOIHEHA TIpH noAepKKe MaTemarmaeckoro LlenTpa B AKaieMroposike, corviantenne ¢ MuHu-
CTEPCTBOM HAayKH U BBICIIEro oopasosanus Poccuiickoit Penepariun Homep 075-15-2019-1613 u mabopaTopun
kpunrorpadun JetBrains Research.
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Jlnst peasu3anuu ajaropuTMa COKpbITHs nHdopMaluu o 3agBkax B Ethereum C++ kiu-
eHT ObLI J1I006aBJIeH OTIENbHBINA MOIY/Ib tenderzkp. OH mocrpoeH Ha 6a3e mpoToKoJa zk-
SNARK ¢ npenobpaborkoii (preprocessing zk-SNARK) mst NP-mosiHOTO si3bika cucrembl
orpannuennii panra 1 (RICS — rank-1 constraint systems). DTor HpOoTOKOJ HCHOJIB3YET
/IANITHYIeCKYI0 KpuByio bappero-Haepura. Peamuzamnus 3Toit Kpunrorpaduieckoit cxeMbl
upejocrasiena 6ubamorekoii libsnark [3].

B monyne tenderzkp peanuzoBanbl (DyHKIME JIId CO3JAHUA W BePUDUKAIMHI JTOKA3a-
TEJILCTBA O KOPPEKTHOCTH 3asiBKU. JOKa3aTeIbcTBO CTPOUTCST HA OCHOBE OUDAHWYEHU Ha
[IPUBATHDBIE U OTKPBITHIE BXO/IHBIE JIAHHBIC 3a9BKH, BHIPAYKEHHBIX C TIOMOIIBIO OA30BBIX CXEM
oubsmoreku libsnark.

st paboThl ¢ JobaBieHHOM KpunTorpadudeckoit cxemoir B Ethereum C++ kymmeHT OBI-
JIN CO3/IaHbI HOBBIE PeJIKOMIMINPOoBaHHble KOHTPaKThI ¢ ajpecamu 0z00...09 u 0200...0a.
Brrna paspaborana Solidity-6ubamoreka, KoTopasi HHKAIICYIUPYET HU3KOYPOBHEBOE B3au-
MOJIEHCTBIE C TIPEJKOMININPOBAHHBIMIA KOHTPAKTAMU W IPEIOCTaBIseT WHTepPdEnRc st
pabotel ¢ HuMu B Brjie Solidity-dyakmuit. Y1obbl 706aBUTH BO3MOXKHOCTD BBI3BIBATH METO-
Jibl pa3paboTannoil Kpunrorpaduyieckoit cxeMbl U3 CTOPOHHUX IMPUJIOXKEHUI ObLIT pacIIupen
JSON-RPC API Ethereum ximenra.

[IpennokeHHbIt 1 peajn30BaHHbINA B JIAHHOW PabOTe METOJI MOYKET OBITH MCIOIHb30BAH
HE TOJIBKO I TeHJIEpOB, HO W B JIPYTUX CHCTEMax, TJie €CTb HeOOXOIMMOCTH CKPBIBATH
JacTh NHMOPMAIUU B OTKPBITON Oj10K4IeitH-ceTu. OH pacimpsieT 06/1acTh MPUMEHEHN TeX-
HOJIOTUU OJIOKYENHH B MPOMBINIJIEHHBIX TPOIPAMMHBIX KOMILIEKCAX.

JINTEPATYPA
1. Hardwick F.S., Akram R. N., and Markantonakis K. Fair and transparent blockchain based
tendering framework — A step towards open governance // IEEE Intern. Conf.
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2. Ben-Sasson E., Chiesa A., Genkin D., et al. SNARKs for C: Verifying program executions
succinctly and in zero knowledge // CRYPTO’2013. LNCS. 2013. V.8043. P.90-108.

3. https://github.com/scipr-lab/libsnark — libsnark: a C++ library for zkSNARK proofs.

Kondyrev D. O. METHOD OF HIDING PRIVATE DATA FOR THE BLOCKCHAIN

TENDER SYSTEM. A new method has been proposed to solve the problem of informa-
tion privacy in open blockchain systems using the zk-SNARK cryptographic zero-knowledge
proof protocol. The proposed method has been implemented as a cryptographic scheme
based on the libsnark library. To integrate the cryptographic scheme into the system, the
Ethereum C 4+ client has been modified, where new functions and an interface for working
with them in the form of precompiled contracts has been added.

Keywords: tenders, distributed systems, blockchain, zero-knowledge proof, zk-SNARK,
Ethereum platform.
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VIIK 519.7

O METPUYECKUNX CBOVMICTBAX MHOXKECTBA CAMO/IYAJIbHBIX
BEHT-®YHKIINIT!

A. B. Kymenko

Bent-byHKInsg Ha3bIBAaETCS CAMOJIYAJIBHOW, €CJIM OHA COBHAJAET CO CBOEH JIyasib-
Hoit OeHT-QyHKIMEN ¥ aHTH-CAMONYAJILHON, — eCAM OHAa COBIAJAET C OTPUIIAHU-
eM cBoell ayasbHO. B namnoit pabore nmpuBomuTcs 0630p M3BECTHBIX METPUUECKUX
CBOMCTB MHOXKECTBA CAMOYaJIbHBIX OeHT-pyukuit. [[puBoanTcsa moHBIH CieKTp pac-
cTosiHUY XAMMUHTA MEXKJYy CaMojlyaabHbIMU OeHT-(DYHKIMAME U3 Kiaacca Maitopana—
Mak®@apnanga. aorcsa pe3ynbrarbl, KACAIOMIMECS XapakTepu3aruu 0y/ieBbix (HyHK-
11, HAXONIAIUXCA HA MAKCUMAaJIbHO BO3MOYKHOM Y/IAJIEHUU OT MHOKECTBA CAMOJIYaJIh-
HbIX OeHT-byHKNMit. [IpuBoguTCs ommrcanme Tpymn aBTOMOPGUIMOB MHOKECTB CaAMO-
IYAJBHBIX W AHTH-CAMOIYAJbHBIX OeHT-(OYHKIUI OT N epeMenubix. Jlaércsa onucanme
aBTOMOP(U3IMOB MHOXKECTBA, OyJIeBbIX (DYHKIINIT OT 1 IEPEMEHHBIX, KOTOPbIE MEHSIIOT
MeCTaMy MHOXKECTBA CAMOIYAJbHBIX U aHTH-CAMOAYaIbHBIX OenT-pyukimit. [Ipuso-
JINTCST OMUCAHNE M30METPUUHBIX OTOOPAKEHU, COXPAHSIONINX HEM3MEHHBIM OTHOIIIE-
nue Pasea xaxmoit OysmeBoit pyHKImy oT n mepemMenubix. Jlaérea xapakTepusais BCex
U30METPUYHBIX 0TOOPAXKEHUN, COXPAHSIONINX MAKCUMAJIBHYI0 HEJIMHEHHOCTD U PACCTO-
sgune XOMMUHTA MEXY KaxK10i OeHT-DyHKINI n IyaJbHON K Hell.

KmroueBble caoBa: 6yaesa Pynkuus, camodyaivbHas OeHm-GyHKUUL, PAcCmMOAHUE
XomMMmuHza, U30MEMPUIHOE OMOOPANCERUE, MEMPUYECKAA PELYAAPHOCTIL, 2PYNNG (6-
momoppuamos, omuowenue Pares

Yepes Fy obo3naunM JuHeHOE IPOCTPAHCTBO BCEX JBOWYHBIX BEKTOPOB JJINHBI 1 HAJ,
nosieM Fy. Byaesoti ynkuyued or n nepeMeHHBIX Ha3biBaeTcst orobpazkenne suja Iy — [Fy.
MuozkecTBO Beex OyseBbIX (DYHKIHE OT 1 IepeMeHHBbIX obo3HavdaeTcsd depe3 F,. [l1a Kaxk-

n
Joit mapsl x,y € FY gepes (z,y) obosnadum uncao @ z;y;, rje onepaius & eCTb cA0HCEHUE
i=1
no modyato 2. Becom Xommunea wt(x) Bekropa x € F HasbiBaeTcs: 4UCIO €ro HEHyJe-
BBIX KoopauHat. Paccmosnue Xommunea Mexmay OysieBbiMu (byHKIusMu f, g oT n mnepe-
MEHHBIX — YHCJIO JBOMYHBIX BEKTOPOB JIJIMHBI 1, HA KOTOPLIX 9TU (DYHKIHMHU IIPHHAMAIOT
pasaudnble 3HaUeHusi, obo3madaercs kak dist(f, g). lpeobpasosanuem Yoarwa — Adamapa
OyzeBoit byHKuuuM f OT N IepeMeHHbIX Ha3biBaeTcs nejaodunciennasd Gynkuua Wy : Fy — 7Z,
3a/[aHHAsT PABEHCTBOM
_ x)D(T,1 . n
Wily) = Y (=1)/@%00 gy e By

z€Fy

Bynera ¢pyuknus f or 96THOrO YnCaa TEPEMEHHBIX 1 HA3BIBALTCS Oenm-hyHnryued, ecan
(Wi(y)| = 22 s xkamaoro y € FY [1]. s muoxectsa 6enT-GyHKIHAil OT N epeMeHHbIX
HCTIONB3YeTcs obo3Hadenue B,. s xaxnoit f € B, oaHO3HATHBIM 06pasoM U3 COOTHOMIE-
aust Wy(y) = (—=1)/®2%2 onpenenserca dyaavnaa x neii 6ent-pynkmus f € B, snavenns
KOTOPO# HAXOJATCS U3 COOTBETCTBHS Jist Kaxkjioro y € Fy. Benr-dynkuns f mazniBaercs
camodyanvrol (anmu-camodyarvroii), ecau f = f (coorBercrBenno f = f@1). Muoxkecrsa
CaMOJIya bHBIX U AHTH-CAMOIYAJbHBIX OeHT-(DYHKITHIT OT 1 TTepeMEeHHBIX 0003HAYAIOTCS de-
pe3 SBT(n) m SB™(n), coorercrrento [2].

Pabora sbimosnena B pamkax rocygapersentoro saganus UM CO PAH (npoekt Ne 0314-2019-0017)
npu nogzep:xkke Poccuiickoro @ouma @yumamenranbibix Ucenenosammit (mpoektsr Ne 18-07-01394, 20-31-
70043) u naboparopuu kpunrorpaduu JetBrains Research.
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OTKpBITON TPOOIEMOIT SIBJISETCS TOTHASA XaPAKTEPU3AINsl U OMUCAHNE KJIACCA CAMOJIY-
AJBHBIX OeHT-DYHKIWI. DTOMY U JPYTUM BOIPOCAM, CBI3aHHBIM C CAMOyaJbHBIMU OeHT-
dbyukmusvu, nocesimgn psag pabor (C. Carlet, L. E. Danielson, M. G. Parker, P. Solé,
X. Hou, T. Feulner, L. Sok, A. Wassermann u ap.). B uacraoctu, B pabore [3| mpuse-
Jiena addunnasg Kiaccudukanusg camoayaibubiex benr-gpynxmnun or 2,4, 6 nepeMeHHbIX u
BCEX KBaPATHIHBIX CAMOYAJTbHBIX OeHT-(DYHKIN OT 8 MepeMeHHBIX OTHOCUTEIBHO IMpe-
06pa3oBaHusi, COXPAHSIONIEr0 CaMoOIyaJlbHOCTh. B ctarhe 2| mpusenena kiaccudukarms
BCEX KBAJIPATHYHBIX CAMOIYAJIbHBIX OeHT-pyHKIuA. Adduaayo KaaccudUKaIUIo KBal-
PATUYHBIX W KyOWUeCKUX CaMOAYAJIbHBIX OeHT-DYHKIHHA OT 8 TepeMeHHBIX OTHOCHTETHHO
1peobpa3oBaHust, COXPAHSIIONIEr0 CaMOIyalIbHOCTh, MOKHO Haifitu B pabore [4]. Bepxuiono
OIEHKY Ha KOJHYECTBO CaMOJyaJbHBIX OeHT-QYHKIHiT MOKHO HaiiTH B crarhe [5]. B pa-
borax [6, 7, 8| mpeacTaBIeHbl KOHCTPYKIIMA CaMOJya bHBIX OeHT-byHKIHi. CBsA3h caMoy-
aJIbHBIX KBaTepPHAPHBIX OeHT-DYHKIUN U caMOAYAJIbHBIX OV/IeBbIX OeHT-(DYHKIIHI oTMedeHa
B [9].

Corutacuo [10], Ha30BéM 0pTOrOHAIBHON I'PyNOl OpsiKa 1 Haj mojeM Fo rpymimy
O, ={L€GL(n,Fy): LL" = I,,},

rae LT — Tpancnonuposanue L, u I, — eIMHWYHAS MaTpHUIA MOPAIKA 1 HAT HoIeM [Fy.
Jlamee OyayT mpeacTaB/IeHbl U3BECTHBIE PE3YIHTATHI, KACAIOIIHEeCs METPHIECKUX CBOWCTB

caMojyaJibHbIX OeHT-DYHKIWiA, omybsnkoBanubie B paborax [11, 12, 13] (cm. Tak-
xe [14],[15],]16]).

1. CamoayansHubie 0enT-dyukiuu Maiiopana—MakPapJianga

Benr-dyukiun or 2k nepeMeHHBIX, TPeJICTABUMBIE B BUIE

flz,y) = (z,7(y)) ® gly), =,y

rjle T — IepecTaHoBKa Ha MHoxKecTse Fh. u g — Gyjesa dbyHkuus or k nepeMeHHbIX, hop-
MUDPYIOT XOPOIIO U3BeCTHBIH Ki1acc Matiopana — Max@apaanda [17|. lanubiit kiace nveer
MOLLHOCTD, pasryio 28! . 22"

Yepes SB},(n) 06031aunM MHOKECTBO caMo/iyabHbIX GeHT-DyHKIMI OT 1 MepeMeHHbIX
u3 kaacca Maiiopana — Mak®apanna, a 1epe3 SB) (n) — MHOXKeCTBO aHTH-CAMOLyTbHBIX
HenT-yHKIMI OT N epeMeHHbIX 13 Kiacca Maiiopana — Mak®apuania. B pabore [3] 6b1au
HaiiIeHbl He0OXOAUMBbIE U TOCTATOYHBIE YCIOBUSA CAMOIYAJIBLHOCTH OeHT-(DYHKIUN U3 KJacca
Mbsiiopana — Mak®@apiania, a nMeHHO, OBLITO TOKa3aHo, 910 beHT-byukius f(z,y) Maiio-
pana — Mak®@apJian/ia MpUHAIIEKUAT MHOKECTBY SBL(Qk) TOTJIa ¥ TOJBKO TOT/a, KOT/Ia

m(y) =Ly ®c), gly)=(cy) &d, yeTF,

rae L € Oy, ¢ € F%, wt(c) — uétnoe uncio, d € Fy. Bamernym, uto [SBY,(2k)| = 27 - |O].

Beropy Jsasiee upejnonaraercs, 4ro n — 4Y€THOE HaTypaJbHOe 4ucjio. B pabo-
Te [11] mccrenoBaINCh BOBMOKHBIE DACCTOSTHASA XIMMUHTA MEKy CaMOLyaTbHBIMU OeHT-
dbyukiuamu u3 kiaacca Maitopana — Mak®Papanjia.

Teopema 1 [11]. Ilyctbn >4 u f,g € SB},(n) USBj,(n), rorma
1
dist(f,g) € {2“1, A (1 + 2—) r=0,1,...,n/2 — 1} .

Bonee Toro, ecn f,g € SBl(n) mim f,g € SB,(n), To Bce IpUBeNEHHEBIE PACCTOSHNS,
kpoMme 2" apnsiorced gocTHzKuMbIMA. [Ipu 3TOM 171 NPOU3BOALHON Haphl ByHKIHi f €
SB},(n) u g € SBy(n) cupasesmso dist(f,g) = 2"
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AHanan3 npUBEIEHHBIX PACCTOSHUN MO3BOJISAET BBHIYHCIATD MUHUMAJIHLHOE DPACCTOSHHE
X3MMHUHTa MEZKJIYy PacCMaTpPUBAEMbIMU (DYHKIHSIMU.

CaencrBue 1. Ilycrb n > 4, Torjla MUHUMAJIBHOE PACCTOAHNE XIMMUHIA MEKIY Ca-
MOJIyaJIbHBIMU O€HT-(DYHKIUSAME OT N IepeMeHHbIX u3 Kjacca Maitopana—Maxk®apiiania
paBHO 272,

Bosiee Toro, B cmily TOro, 4TO MHHHMAJLHOE DACCTOSIHUE XAMMUHTA MEXKIY KBal-
paTudHbBIMU OyJeBbIMH (DYHKIUSIMH OT 1 [HePeMeHHbIX (KOJOBBIMH CJIoBaMH Koja Puma—
MaJiiepa RM(2,n)) ne menbine, yem 272 [18], nosyuaem ciejyiomniee

CaencrBue 2. Ilycrb n > 4, Torja MUHUMAJIbHOE PACCTOSHUE XIMMUHIA MEXKLY
KBaPATHIHBIMEI OyJIeBBIMU (DYHKIHUSIMH JOCTHZKHUMO HA CAMOAYAJbHBIX OEHT-(DYHKIIHIX
OT M TepeMeHHbIX n3 Kiaacca Maitopana—Mak®PapJiiana.

2. MeTtpudeckas peryjagpHOCTb

Bceroy B 9101 1uiaBe mpeiosaraeTes, 94To n — 46THOE HATYPAJIbHOE YHUCJIO.

NsBectHo [19], 910 MUHHMAIBHOE pacCcTOsSTHIE XIMMUHTA MeXK/y GeHT-DYHKIUSIMA OT 1
nepeMerHEBIX pasHo 2"/2. B pabore [12] moxazamo, uTo Tpu n > 4 JaHHOE PACCTOSHUE
JOCTHZKHMO Ha MHOYKECTBe (QHTH-)CaMOIya bHbIX OeHT-hyHKIIHIA.

Vreepxkaenune 1 [12|. Ilycrs n > 4, Torja MEUHHMAJbHOE DACCTOSHHE X3MMHHIA
MesK Ty (aHTH-)caMoayambHBIMI GeRT-GYHKITAMA OT 1 TIePeMeHHBIX paBHo 27/2,

I[Iyctrb A C  F} — mnpousBosibHOe MHOXKecTBO, u y € [FJ — mnpou3BOJbHBIM
JBOMUHBLIA Bekrop. Paccrognue or Bekropa y 10 MHOXKecTBa A oupejesdercs Kak
dist(y, A) = mijgl dist(y, x). Paduycom noxpwmus muoxkecrBa A HasbiBaercs qucsiao d(A) =

[AS

max dist(y, A). MHo»KecTBO IBOMYHBIX BEKTOPOB, HaxXomadmuxcs Ha paccrognuu d(A) ot
yelry

muO)kecTBa A C Y, HazbIBaeTCd mempuueckum donosreruem MEOKeCTBa A 1 0003HATaeT-

ca A [20]. Ecan cnipaseiinso A= A, TO MHOXKECTBO HA3BIBACTCS MEMPUUECKU PELYAAPHBIM.

PaCCManI/IBaH JdaHHbIC OlIpeAeJ/ICHUuA IIPUMECHUTE/JIbHO K BEKTOPaM 3HaYEHUN 6yﬂeBbIX
pyHKIM, MOXKHO OIPENeuTb Paduyc NOKPwuIMUL, MEMPUYECKOE JONOAHEHUE T MEMPUYE-
CKYI0 pe2yAapHOCMb TPOU3BOIbHOTO onMHuokecTBa M C F,, [21].

B pabore [3| 6bL10 J0Ka3aHO, 9TO Pajuyc HOKpLITHd MHOMecTBa SBT (n) pasenm 2771,
Caemytoriee yTBepKIeHUE ONUCHIBACT METPUIECKOE JOTOJTHEHIE MHOYKECTBA CAMOILY A IbHBIX
OeHT-pyHKIMIA.

Teopema 2 [12|. IIycrb n > 4, Torga Gysiesa dyHKIHsS OT N TePEMEHHBIX

— SBJISETCH CaMOJIyaJbHON OeHT-(pyHKIME B TOM M TOJBKO B TOM Cjydae, KOTJIa OHA
HaXOJNTCSA Ha PACCTOSHUN 271 0T MHOMKECTBa BCEX aHTH-CAMOAYAJLHBIX OeHT-(byHKITi
—_—

OT N TIePEMEHHBIX, TO €CTh SIBJSIETCSI HIeMEHTOM MHOKecTBa SB™(n);
— SBJIETCd AHTH-CAMOyaTbHOM OeHT-DyHKIHEll B TOM U TOJIBKO B TOM CJIydae, KOTJa OHA
HaXOJUTCA Ha PACCTOAHHE 2"~ 1 0T MHOKeCTBa BCeX caMOIyaJbHBIX GeHT-(DyHKIM OT n
—_—

NePEeMEHHbIX, TO €CTh ABJIAETCA SJIeMEHTOM MHOKecTBa SBT (n).

B paBore [22] 66110 q0KazaH0, 4To abdUHHBIMEA SABJISIIOTC Oy1eBbl (DYHKIUH, KOTOPAsI
HaXoAdTCA Ha MaKCUMaAJIbHO a0O3MOXKHOM YAaJI€HUN OT MHO2KECTBa 6eHT—(1)yHK]_[I/H71, 9TO BJIE-
9€T Jdyaavrocme B onpenerennn adduaabx pyukuit n 6enT-Qpynknuit. Takum obpazom,
Ha OCHOBaHUN TeOpeMbI 2 MOZKHO T'OBOPUTH O TOM, UYTO MeXKAY MHOXKECTBaMH CaMOJIYyaJlb-
HBIX ¥ aHTH-CAMOJIYAJIbHBIX O€HT-(DYHKIMI OT 1 > 4 HepeMeHHBIX CYIIECTBYET MeTpHIeCKast
AYasrvHOCTD.
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Ha ocrnosarun Teopewmsr 2 (caydgaii n = 2 pacemMorper orenbo) B [12] 6110 TTOKa3aHo,
410

CaencrBue 3.

1) Mmuoxectso SBT(n) Beex camoayaabHbIX 6eHT-(YHKINI OT 7 IepeMeHHBIX ABJIgeTcs
METPUYECKU PErYJISIPHBIM;

2) Muoxkectso SB™(n) Beex aHTH-CaMOnyaJbHbIX GeHT-DYHKIMA OT 1 MePeMEHHBIX 5B~
JIETCS METPUYECKU PEryJIsiPHBIM.

3. I'pynna aBTroMmop¢du3MoB

Orobparkenne Bcex OysieBbIX (DYHKIHN OT N MEPEMEHHBIX B ceOsi HA3BIBACTCH U30MEM-
PUNHBLM, €CJTH OHO COXPAHIET PACCTOTHIE XIMMUHTA MKy KarKJ0i mapoi 0y/1eBbIX (pyHK-
Uit OT N epeMeHHbIX. MHOXKECTBO N30METPUIHBIX OTOOPaYKEeHNH MHOYKECTBA, BCEX OYJIeBBIX
byHKIMI 0T n mepeMeHHbIX B cebs OyaeM obo3nadarh depes Z,. M3BecTHO, 9TO KaxKa0€e Ta-
Koe 0TOOpazKeHue OJHO3HAYHO IMPEeJICTABISIeTCS B BHJIE

f(x) — [(m(z)) @ g(x),

rje T — IepecTaHOBKa Ha MHOxKecTBe FY, a g — OyieBa (GhyHKIUsS OT N epeMeHHbIX [23].
Orobpazkenue Takoro Buja 0003Ha4IM depes . , € Z,. I3BecTno, 4To Kazkioe n30oMerpuy-
HOEe OTOOpazKeHue MHOYKECTBa BCeX Oy/eBbIX (DYHKIHUI OT YETHOIO YHC/Ia TEPEMEHHBIX 1 B
cebst, OCTaBJISIONIee MHOXKECTBO 3, HA MecTe, MPeICTABIMO B BUIE KOMIO3uus aPUHHOTO
npeobpazoBanusi KoOpAuHaT U npubasienus addunHOM DYHKIMI 0T N epeMeHHbIX [24].

I'pynnoti asmomopduszmos puKcupoBanHoro moaMuoxkecrsa M C F,, Ha3bIBaeTCs I'PyIl-
11a 3JIeMEHTOB MHOXKECTBa Z,,, ocTaB/sgomas Muoxkectso M na mecte. ['pynna aBromopdus-
MoM MHOXkecTBa M oGoznadaercs depes Aut (M).

Jlajtee mpeamosaraeTcs, 9To N — Y€THOE HATYPaJIbHOe THCIIO.

B pa6ore [4] (cm. Taxxke [3]) ObL10 10Ka3aHO, 9TO 0OTOOpaKeHUE BeeX OyaeBbIX (byHKIHI
OT M NEePEMEHHBIX B cebsl, UMeIoIee BT

f@) — f(L(z®c) @ (cr)@d,

rne L € O,, ¢ € F}, wt(c) — guérnoe uaucio, d € Fy, coxpanser camomyaJbHOCTh OEHT-
dyukimu. HerpynHo BugeTh, 4To BCe 0TOOParXKEeHUs TAHHOTO BUA SBJISIOTCS dJI€MEHTAMU
MHO)KecTBa Z,. ['pynina Takux mpeobpa3oBaHuii HA3bIBACTCA PACUUPERHOT 0PMO20HAALHOT
epynnot u obosuadaerca O, |4, 25|. NzsectHo, uro O, gBASETCS MOATPYNIION TPYIIIbHI
GL (n + 2,Fs) [4].

B pa6ote [2| 6b110 0T™MedeHO, 9TO 0TOOpaKeHne BeeX GyreBbIX (DYHKIMI OT 1 HepeMeH-
HBIX B cebsl, IMeoIIee BU

fl@) = fla®c)® (),

rie ¢ € Y, wt(c) — meaérnoe uncio, onpejesser buekmuo Mex 1y MEoxkecTsamu SBY(n) n
SB™(n). OueBunaHo, 9T0 Takoe 0TOOparKeHHe COXPAHSIET PACCTOsHHE XAMMUHTA. JacTHBIH
caydait orobpazkenust qanuoro suga — npu ¢ = (1,0,0,...,0) € Fy — panee 6611 pacMOTpeH
B cTaThe [3], Ha ocHOBaHHH Yero OLLI cleJaH BBIBOJ O TOM, YTO MezK 1y MHoxKecTBaMu SBT (n)
u SB7(n) cyumecrByer B3auMHO-0JHO3HAYHOE COOTBETCTBUE.

B craree [13| nmonyueno o6o0iienne JaHHBIX DE3yJbTATOB B PaMKaX KJACCA H30MeT-
pUuHBIX 0TOOpaskeHuii. Bbiio qoKkazano, 4ro rpymnms aproMopduzMos Muozkects SBT(n) u
SB™(n) coBmagaior.

Teopema 3 [13]. Tlpu n > 4, cupasesymso Aut (SB* (n)) = Aut (SB™(n)).
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Boin mostyuen caeayionuii Kputepuii COXpaHeHus caMo/IyaIbHOCTH.

Teopema 4 [13]. Ilycts n > 4, Torma H30MeTpuIHOE OTOOPAYKEHHE Py 5 SABIACTCS dJTe-
MEHTOM Ipribl Aut (SB+(n)) B TOM U TOJIbKO B TOM CJIydae, Korja st JIIoObX T,y € Y
CIIpaBeI/INBO

(m(z),y) @ g(x) = (z,7 ' (y)) ® g (v ().

C mcnoJsib30BaHUEM BBITIEYIIOMSTHYTOTO KpUTeprus U TeopeMbl 3 OBLIO MOTYyYeHO OMUCA-
HUE TPYIIbI aBTOMOPMU3MOB MHOKECTBA (AHTH-)CaMOYaIbHBIX GeHT-DYHKIHUI OT N mepe-
MEHHBIX.

Teopema 5 [13|. IIpu n > 4 cupaBeanBo
Aut (SB(n)) = Aut (SB™(n)) = O,.

N3 mostygeHHbIX pe3yabTaTOB CJeayeT, 9To Hosiee 00Iero moaxona K KJaaccuuKannm ca-
MOJIyaJIbHBIX OeHT-(DYHKIINI Ha OCHOBE M30METPUUYHBIX OTOOPAYKEHNH, YeM TPeITOKEHHBII
B paborax |3, 4], me cymecrByer.

[IpuMennTeIbHO K OHeKIAsAM Mexky MHokecTBamu SBT(n) m SB™(n) 6b1 notyden
CJICIYIOIIUA KPUTEPUil.

Teopema 6 [13]. IIycts n > 4, Torma u3oMerpuuHOe 0TOOpaZKEHUE (P , ONpPEIe/IseT
Guekimio Mexk 1y MHozkectBaMu SBT(n) 1 SB™(n) B ToM 1 TOJIBKO B TOM cJlydae, KOIJa /s
mobbIX x,y € [} cupaBemmBo

(m(z),y) D g(x) = (z, 7 (y)) g (r ' (y) ® 1.

C wcnosb30BaHUEM JTAHHOTO KPUTEPHs ObLaa MoaydeHa obmast popMa U3METPUIHBIX
OTOOpazKeHHmil, onpeendgionux GHueKIuio Mexk Iy Muozkectamu SB(n) u SB™(n).

Teopema 7 [13|. Ilpu n > 4 m3omerpuunoe orobpaxenue @, , € I, oupenenser Ou-
eKIuio Mexk 1y MHoxkectsamu SBT(n) u SB™(n) ecim u rosbko eciu

m(x)=L(xz®c), g(x) = (c,z) ®d, x €T},
riae L € O,, ¢ € F}, wt(c) — uérHoe uucio, d € F.

13 Teopem 5 u 7 ciegyet, 9T0 96THOCTH Beca X9MMHUHTa BeKTOpa ¢ € I, (purypupytome-
r'o B ONUCAHUU PACIITHPEHHON OPTOrOHAILHOM IPYIIIBI, ABALETCH ~TepeKaiodaTegiemM’ MexK Ly
H30METPUIHBIM OTOOPaZKEHHEM, COXPAHAIONTUM (AHTH-)CAMOYaJIbHOCTb, U H30METPUIHBIM
0TOOparkeHneM, MEeHSIONTUM MeCTaMU CAMOJTyaJIbHbIe U aHTH-CAMOIYATbHbIe OeHT-DYHKITIH.

4. Paccrossnue X3aMMuHTA MeKAy OeHT-(pyHKIuil u AyanabHON K Heil

Cormacho [3, 25| ommuowenuem Panesa (the Rayleigh quotient) Sy Gynesoit Gynxmuu f
OT 7 IIePEMEHHBIX HA3BIBAETCsI UUCIIO

Sy = Z (—1)f@efWtzy) — Z (=)D W ().

z,yclfy yely

Ussectro [3], uro aGeomornoe snauenue S; me mpesocxoput uucia 252 mpu srom B
ciIydae, Korja n — 49€THOe YHCJI0, JAaHHAs OINEHKA JOCTHIAETCH TOJHKO Ha CaMOYaJIbHBIX
O6eHT-DYyHKIIAX (—1—23"/ 2) U aHTH-CAMOYAJTbHBIX OeHT-DYHKIHIX (—23”/ 2).

amnee mpeamnonaraeTcs, 9To N — YE6THOE HATYPAJbHOE THUCJIO.

B pa6ore [13]| GbLH HCCTI0BAHBI BOMPOCHI COXPAHEHHsI, & TAKYKE CMEHBI 3HAKa OTHO-
menus Pajies kax10it Oy/jieBoil PyHKIIMU OT N IEPEMEHbIX DU U30METPUYHBIX 1IPe0dpa3o-
BAHUIX.
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Teopema 8 [13]. Ilycts n > 4, Torga nsomerpudHoe orobpakenue ¢, € Z, coxpa-
HAeT OTHOLICHHe P3ajed Kaxkmoi OyneBoil (hpyHKIUHM OT 7 HEPEMEHHBIX B TOM M TOJIBKO B
TOM CaIydae, Kora ¢, € Aut (SB*(n)).

Teopema 9 [13|. Ilycrs n > 4, rorna usoMerpudnoe orobpazxeHne @, , € I, MeHser
3HAK OTHOIIEHUs Pajesd Kaxk1oil 0y/ieBoil (DYHKIUU OT N MePEeMEHHBIX B TOM U TOJBKO B
TOM CJlydae, KOTJa OHO ONpeJeNseT OHeKIUIo Mesk 1y MuoxecTsamu SBT (n) u SB™(n).

[lyers f € B,,, u3 cooTHOIEHUS

. = — 1
dist(f, f) = 2" = 5o S

CJI€JIyeT, YTO OTHOIMeHHe P3ajiesd NOJHOCThIO XapaKTepu3yeT paccTognne XSMMUHTA MEK Iy
benr-pyuknueit f € B, u ayanbuoit k weit pyukuueit f € B,. Takum obpazom, Ha ocHOBE
Teopem 5 1 8 MOXKHO NOJIYYUTH CJIEAYIONIMI Pe3yabTaT.

Teopema 10 [13]. Ilpm n > 4 usomerpundanoe oTobpaxenne ¢, , € I, OCTABIAET MHO-
2KecTBO OeHT-QYHKIUHA OT N IEePEMEHHBIX Ha MECTe W COXPaHseT PacCTOdHuE XIMMHUHIA
MezKIy OeHT-(pyHKIMel 1 1yaJbHoil K Heil TOrJa U TOJLKO TOT/ia, KOr/a

flz) — f(L(x®c)®(c,x) Bd, x ey, (1)

rne L € O,, c € Fy, wt(c) — gérHoe uncio, d € Fy.
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Kutsenko A. V. ON METRICAL PROPERTIES OF THE SET OF SELF-DUAL
BENT FUNCTIONS. For every bent function f its dual bent function f is uniquely de-
fined. If f = f then f is called self-dual bent and it is called anti-self-dual bent if f = f 1.
In this work we give a review of metrical properties of the set of self-dual bent functions.
We give a complete Hamming distance spectrum between self-dual Maiorana — McFarland
bent functions. The set of Boolean functions which are maximally distant from the set of
self-dual bent functions is discussed. We give a characterization of automorphim groups of
the sets of self-dual and anti-self-dual bent functions in n variables as well as the description
of isometric mappings that define bijections between the sets of self-dual and anti-self dual
bent functions. The set of isometric mappings which preserve the Rayleigh quotient of a
Boolean function is given. As a corollary all isometric mappings which preserve bentness
and the Hamming distance between bent function and its dual are given.

Keywords: Boolean function, self-dual bent function, Hamming distance, isometric map-
ping, metrical reqularity, automorphism group, Rayleigh quotient of Sylvester Hadamard
matrix
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Tera HoBOCHOMPCKOTO HATIMOHATBLHOTO MCCIEIOBATETHCKOTO TOCYIAPCTBEHHOTO yHUBEpCcuTeTa, IH-
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VIIK 519.7
KPUIITOI'PA®ONYECKUE CBOMICTBA OPTOMOP®N3MOB!

FO. T1. Makcumiok
Hnemumym mamemamuru um. C. JI. Cobosesa, 2. Hosocubupck, Poccus

E-mail: yumaximlyuk@gmail.com

B pabore paccMoTpeHBI B3aNMHO OJHO3HAUHBIE oToOpaskenus F': Z§ — 75, Ha3bIBae-
Mble opromopdusmamu, Takue, 9o orobpaxenns G(x) = F(x) @ x Tak xe siBISIOTCSA
B3auMHO ofHO3HauYHbIMU. OHU ucCHoONB3yIoTCa B cxeMme Jlag-Meccu B KauecTBe mepe-
METTUBAIOIIET0 3JIEMEHTA MEXK Y PayHIAMU, & TaK¥Ke JJIs MOCTPOEHUS KPUITOrpadu-
Jecku cToiikux S-6710K0B. MccienoBaauch OCHOBHBIE KpUNITOTrpahuieckue cBoicTBa, a
VMEHHO, HeJMHeHHbIe XapakTepucTuky u nuddeperuaabias pAaBHOMEPHOCTb. Bhigs-
JIEHO, UYTO OPTOMOP(U3MBI OT MAJIOTO YUCJIA TIEPEMEHHBIX HE YCTOWYUBLI K JIMHEHHOMY
u quddepeHInaIbHOMY KPATTOAHATH3AM.

KimroueBbie ciioBa: opmomoppusm, mabauya Aunednozo npeobaadanus, mabiuya
dugppepenuuanos.

B cuvmerpuanOit KpunTorpaduu 4acTo NCHOAB3YIOTCA OTOOpayKeHHs MHOXKECTBA Zi,
COCTOSIIIETO U3 JIBOMYHBIX HAOOPOB JUIMHBI 1, Ha cebst. B dactHOCTH, B KHUre [1| B mmd-
pax FOX (IDEA NXT), ucnosip3yomux cxemy Jlas-Meccu, mpejjiaraercst NCIOIb30BAT
0TOOpaXKeHNe, HA3BIBAEMOE OPTOMOP(MUIMOM.

Opromopdusm Zj — 310 B3aUMHO OJHO3HA4YHOe orobpaxkenue F' : Z§ — Z§ Takoe, 410
orobpazxenne G(x) = F(x)®x Tak ¥Ke ABJISETCS B3ANMHO OJHO3HAYHBIM, 1jie & — HOOHTOBOE
CJIOYKEeHHE 10 MOJLYJO 2.

B smuTeparype B OCHOBHOM OCBEIIAIOTCS IE€PEMENINBAIOIINE CBOKCTBA OPTOMOPMDU3MOB.
Hanpumep, B pabote [2] oproMopdbu3Mbl XapakKTepu3yIOTcsi CBORCTBOM OTOOPAYKATH KayK-
JIYI0 MAKCUMAJIbHYIO HOJAIPYIILY TPYIIbI JBOUYHBIX HAOOPOB [IJINHBI 1 HAIIOJIOBUHY B Ce0st
U HAIOJIOBUHY B CBOE JIOMO/THEHHE.

B pamkax jgamnnoii paborsl Oblla HalHCaHa IPOrpaMMa, KOTOpasd HCIOJb3YeT pa3pa-
OOTAHHBIN PEKYPCUBHBIN AJTOPUTM IOCTPOCHHSI BCEX OPTOMOPMU3MOB JIIs 3aJaHHOIO N.
Omna nepebupaeT Bce 3HAYECHHS I k-TO dJeMEHTa U MPOBepsaeT BHIMOJTHEHUE ONPEIeTeHHS
opromopduszma. Ecsu npoBepka ycrerisa, 1o nepexour K k+ 1-My 3/1eMenTy, nHade npoBe-
psercs cieaywomee 3Hadenne k-ro smeMenTa. Korga mpoBepeHbl BCe BO3MOYKHBIE 3HAUCHUST
Jist k-oft IO3UIMK, TTPOMCXOIUT BO3BPAT K JAJbHENTIeH TPOBEPKYU 3HAYCHUN JIJIA TTO3UIUN
k — 1. C moMoImipio 9To# mporpaMMbl OBLIX MOJYyYeHbl OPTOMOPMU3MBI I MAJbIX 3HAYE-
HUH 1 1 onuH oTpoMopdu3M Ipu n = 16 JId uccaeaoBanus Moaudukaun mudpa Simon
32/64 3|, rue Bmecro cern Peiicresns ucnonb3oBaiach cxema Jlas-Meccu.

g Maaeix 3uadenuit n ObLIO TOJYYeHO, 9TO:

e 1Ipu n = 2 cymiecTByer 8 opToMOphU3IMOB;

e 1pu n = 3 cymiecTByeT 384 oproMopduzMa;

e 1pu n = 4 cymecrByer 244744192 opromopduszma.

! Pabora BBIMOIHEHA, TIpH O AeprkKe MaTemarmaeckoro LleaTpa B AKameMroposxe, coriamenue ¢ MuHn-
CTEePCTBOM HAYKH U BbICIero obpasoBanus Poccuiickoit @emepariuu nomep 075-15-2019-1613 u 1aboparopun
kpunrorpadun JetBrains Research.
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FO. I1. Makcumnrox

JI1s1 BeceX MOJYYeHHBIX OPTOMOPMU3MOB dKCIEpeMeHTAIbHO UCCIETOBAIICH OCHOBHbBIE
Kpunrorpagpuiyeckue CBOWCTBa, a UMEHHO, HEJMHEHHbIe XapaKTepucTuku u auddepenu-
aJibHasi PABHOMEPHOCTh.

O6o3naunM BXOA u Bbixoj byukuuu F : Z§ — ZL uwepes x = (x1,...,T,) 0 y =
(Y1, - - -, Yn) COOTBETCTBEHHO. J1JIsI TUHEHHOTO KPUIITOAHAIN3A CTPOUTCsI TabIMIa JHHEHHOTO
npeobIalannsd, T/ie Ha IepecedyeHny CTPOKH u € Z§ 1 cToabna v € Z5 HaXOAUTCS 9UCTO A
Takoe, u4To coorHouenne (u,r) = (v,y) BBIIOJHLETCH ¢ BePOATHOCTBIO (2771 4+ \) /2" e
(U, ) = U1y D -+ + B Up Ty

YrBepxkaenue 1. [Ipu n paBubix 2, 3 u 4 Tabjuinpl JUHEHHOTO TPEOOIATAHASA OPTO-
MOPQU3MOB COCTOAT U3 3Hadenuit 0 u £27 1,

st nuddepernuaaibHOro Kpunroanaiusa B Tabuauie auddepeHIInaaoB Ha mepece-
YeHUU CTPOKU u € Z§ u crojabua v € 7§ HAXOAUTCd HUCJIO A TaKOe, 4T0 DPABEHCTBO
F(z ®u) @ F(x) = v BBINOJIHSIETCS B TOYHOCTH JUIA A PA3JIUIHBIX L.

YrBepxkaenue 2. llpu n pasubix 2, 3 u 4 rabyuin guddepennuanoB oproMmopdusmon
cocTosAT u3 3HadeHnit 0 m 2",

s mostydgernoro opromMopdusMa mpu n = 16 Takke HCCJIEI0OBAIACH TaOIUIBI JTAHEH-
HOTO mpeobaaganus u auddepeHnuanos. Tabauna JUHEHHOTO TpeodaaJaHusI COCTOUT U3
snauennmit 0 m 2771, a Tabmuna quddepenuanos us 0 u 27

VrBepxkaenus 1, 2 u TodedHoe mcciegoBaHne opromopdusma st n = 16 mo3BoJIg-
0T IPEeJIIIOJM0KHTh, YTO JIJIs JIF0OOro 3HavueHus n Tadbaunbl auddepeHIuanos U JUHeHHOro
npeobraanuss opToMOpPMhU3MOB UMEIOT BHJ, OMMCAHHBINA BbIle. M3 dero ciaeayer, 9To op-
TOMOPGMU3MBI CaMH TI0 cebe He YCTOHYMBHEL K JauHeiitHoMy u auddepeHnuaibHoOMy KPUAITO-
aHaJM3aM U JOJIZKHBI UCIIO0/Ib30BATHCS B MIM(PAX B KAUECTBE BCIIOMOTATETLHOTO JJIEMEHTA
— JIJIsT TIOCTPOeHus H0JIee yCTONINBBIX K KPUMITOAHAINIY MEPEMEITUBAONINX 0TOODAKEHNUIA.
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Maksimluk J. P. CRYPTOGRAPHIC PROPERTIES OF ORTHOMORPHIC
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orthomorphisms such that the mappings G(z) = F(z) @ = are also bijective. It is used
in the Lai-Massey scheme as a mixing element between rounds and it also can be used to
construct cryptographically strong S-boxes. The main cryptographic properties are stud-
ied, namely nonlinearity and differential uniformity. It turned out that orthomorphisms of
a small number of variables are not resistant to linear and differential cryptanalysis.
Keywords: orthomorphic permutation, linear approzimation table, difference distribution
table.
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VIIK 519.7

O PA3JIOKEHIU BEKTOPHOII BYJIEBOM ®VYHKIIUU B
KOMIIO3UIINIO ABYX BEKTOPHBIX ®VHKIININ!

I'. M. ITuraTyc

B nammoit pabore uccaemyercs BO3MOXKHOCTH TPEICTABIEHUS BEKTOPHONH OyseBoii
hyHKIMT B BUIE KOMIIO3UIINA JBYX BEKTOPHBIX Oy/IeBbIxX (DYHKIINI MeHbIel aaredbpa-
MYeCcKO# cremenn. BBogWTCS MOHATHE Pa3/I0KUMOCTH BEKTOPHOI OyaeBo#l (byHKIMH.
N3zy4en Bompoc coxpanenus Pa3/I0KUMOCTH TPy pacimupenuaoM adduaroMm mpeodpa-
zoBanuu. llpencrapiaeHa KOHCTPYKIHs BEKTOPHOI Oy 1eBoii (byHKIIMN TpPeTheil CTeneHn
OT MPOU3BOJILHOTO 9HC/Ia IEPEMEHHBIX, ABJISIONICHCs pazdtoxuMoit. Takxke ObL1 mpO-
BeJEeH BLIYUC/IUTEIbHBIN SKIIEPUMEHT, B PE3Y/IbTaTE KOTOPOro OLLIO T0KA3aHO, ITO BCE
Kybuueckue BEKTOpPHBIE OyJIeBbI (PYHKIIUKA OT TPEX MEPEMEHHBIX ABJSAIOTCI PA3HIO0KI-
MBIMMU.

KimroueBbie cjioBa: eexmophas byaesa PyHKyus, 0eKOMNOZUYULA, NOPO2OSAS PEAAU-
30UUA

Arakn 1o cTOpoHHEM KaHaJgaM |1| — BuJ| aTak, mesbilo KOTOPBIX SIBJISIETCS HAXOZXKJICHHE
YI3BUMOCTEH B peajn3aliuu Kpunrorpaduyaeckoit cucrembl. Ha JaHHBIT MOMEHT 3TH aTaKn
SBJISIOTCS OJIHUMU U3 Hanboiee 3PEKTUBHBIX CPeJIM BCEX BUIOB KpUNTOaHa3u3a. B arakax
0 CTOPOHHUM KaHAJaM HCHOJIb3yeTcsd WHMOPMaIns, MOoJTydeHHas IPU OTCJIeKNBAHUN TTe-
pernajioB HAIPSIZKeHUH, BPEMEHU BBITIOJHEHUS TIPOIECCOB, JTEKTPOMATHUTHOTO H3TYYeHUS
UJIU 3BYKOB IIPH [IPOBOJIMMbBIX AJTOPUTMOM BbITHCJICHUSIX.

[Toporosas peanusanus [2| sBJsieTCsT KOHTPMEPOH IO OTHOIIEHHUIO K aTaKaM 110 CTOPOH-
HUM KaHAJIaM, Pa3ie/isis HADOPHI BXOAHBIX JAHHBIX W HUCIO/Ib3yeMble BEKTOPHBIE OYJIEBBI
(byHKIIMN HA 9aCTH, O3BOJIdAS CKPBITh PA3Juvns MexK/1y onepanuaMu. Takum obpazom, ec-
JIA pa3buenue yI0BAETBOPSET Py YCJIOBUiL, mpu paboTe aaropuTMa He MPOUCXOIUT YTEeIKU
nHdopManum, KOTopasg MOXKeT OBITh HCIOTb30BAHA B aTaKe IO CTOPOHHUM KaHAJIAM.

B nannom meTose HeoOX0MMO MOCTPOUTD pa3dbuenue /s BeKTOPHOI OyJieBoii (pyHKimm
OTpe/IeJIEHHBIM 00Pa30M, ITO He BCerna yaaercs ¢aenatb. OaHako ObLT NpuayMaH CIocod
pellleHns TaHHOW TPOOIeMbl, UCIOJIB3YIONINI TTOCTpOoeHNe pa3bueHus /i OoJiee TPOCTHIX
dyHKIN, KOMIO3UNITEN KOTOPBIX SABJAseTCS N3HAYATBHO paccMaTpuBaeMas BeKTOpHad Oy-
JIeBa (PYHKITHUSI.

B pmannoit pabore anam3mpyercs BO3MOKHOCTH IPEJICTABJICHUS] BEKTOPHBIX OyJIEBBIX
byHKIMI B BUjIe KOMIO3HUIINU BEKTOPHBIX OY/IEBBIX (DYHKITNI MEHbINX cTenenei. B nmepsyro
odepe]b JaHHAS 337298 IPUMEHNMa K TOPOT'OBO Pean3alnii, KOTOPYIO He BCerjaa BO3MOK-
HO OCYIIECTBUTH € U3HAYAJILHON BEKTOPHOM Oy1eBOil (pYHKIUEH U3 aJIropuT™Ma, HO BO3MOK-
HO ¢ (PYHKIINUSAMH, KOMIO3UIUS KOTOPHIX PAaBHSAETCS TAHHOW. BBLIN paccMOTpeHbI BEKTOD-
Hbie OysieBbl (DyHKIUU OT TPEX MEePeMEeHHBIX ¢ aaredpamdeckoil CTeleHbI0 PABHOW TpeM u
BO3MOYKHOCThH UX TPEJCTABJICHUs] B BUJE KOMIIO3WH JIBYX BEKTOPHBIX Oy/IeBbIX (DYHKITHIT
ajredbpandeckoil CTeneHn JiBa.

Tak Kak BayKHBIM IPU PACCMOTPEHUN ABJISAEeTCA COXpaHeHWe CBOMCTB MPU Mpeodpa3oBa-
HUSIX, & OIHUM U3 Hanbojee paclIpocTpaHeHHBIX sBIdeTCs paciiuperHoe ahduaaoe npeod-
pa3oBaHme, Mbl UCCJIEIYEM BOHPOC COXPAHEHUs PA3/JI0KUMOCTU BEKTOPHOI OyseBoit (pyHK-
UK TIPU paciiupenHoi adPUHHON SKBUBAJEHTHOCTH.

Bexmopnot 6yaesoti dyrxyued ((n, m)-dbyukiueii) F' HazplBaeTCs MTPOU3BOIHHOE 0TOG-
paxkernne I : F} — FJ'. B caygae m = 1 rosopar, uro F' —- byasesa dynrkuyus om n

! Pabora BBIIOMHEHA IPH HOIepXKKe nabopaTopun Kpunrtorpadgun JetBrains Research.
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nepemernuix. Bektoprast 6ynesa (n, m)-byukius F MoxkeT ObITh 3a71aHa HAO0OPOM U3 M KO-
OpauHATHBIX Oys1eBbX dyHKIHM o n nepemenusbix: F(z) = (fi(z), fo(z), ..., fm(2)), x € FY.
JIo6y10 (n, m)- GYHKIHIO MOXKHO €IHHCTBEHHBIM 00PA30M 3aIMCATh B BHIE NOAUHOMG 2K e-
2aAKUNG, W anzepaueckoli 1nopmarvrol gopmu (AHD):

F(.Q?l, ,[L’n) = (@ @ Qi Lig " et mlk) s> ap,

k=1 i1,..,ix

e JIst KasKIA0r0 k MHIEKCHI 01, ..., i, HOMAPHO PA3IUIHBI B MHOKECTBA {11, ..., if } ABISIOT-
Csl BCEMU Da3JIMYHBIME HEMYCTHIMH TIOMHOKecTBaMu MHOKecTBa {1, ...,n}; koaddunnen-
TBL G4y 4, , Gp IPUHAMAIOT 3Hadenus u3 Fy'. Aunzebpauyeckots cmenenvio deg(F') dyuxiun
F : Fy — FJ' HaspiBaeTcs KOJMYECTBO ME€PEMEHHBIX B CaMOM JITHHHOM cjaraemom AHO®,
IpH KOTOPOM KOIDMDUIMEHT He paBeH HyJIeBOMY BeKTOpy. PyHKIWs cTermeHd He BhIme 1
Ha3bIBaeTCA adurnotl, mpu droM B cay4dae ag = 0 pyHKIUI AUHETHA.

JBe BekTopHbe (n,n)-byaknun F u G HA3bIBAIOTCS PACUWUPEHHO afPunto IKeusa-
saermuvimy (EA-S5KBUBATEHTHBIME), €CJIU CYIIECTBYOT JaBe adbduunbe (1, n)-10CTaHOBKH
A, B na muoxecrse Fy n abdunuas (n,n)-dbyuknusa C, rakue yto G(x) = (BoF o A)(x)+
C(z),z € F.

[Tycrs F' — Bekropuas GyjeBa (n,n)-pyHKius, Takas, 4T0 CyHUIECTBYIOT BEKTOPHbIE Oy-
aesul (n, n)-byukuun G, H, rakue aro max {deg(G),deg(H)} < deg(F) u F(z) = G(H(x))
st Beex © € FY. Bekropuyiwo OyneBy (n,n)-byukmuio F crenenun d > 2, A0MyCKAIONLYO
TAKYIO JIEKOMIIO3UIHIO, OY/IeM HA3BIBATD PA3A0HCUMOTL.

Teopema 1. Tlycts (n,n)-byukmus F cremenn d > 2 paznoxkuma. Torga (n,n)-
dbyukius F' = Ay o Flo Ay, tine Ay, Ay — npounsBosibabie adduHHbIE (1, N)-NOIACTAHOBKH,
TakzKe OyJer ABIAThCA pa3toKuMoii. Eciu F' npegcraBuMa B BH/Ie KOMIIO3UIIUY JABYX (12, 1)-
dynkmuit G, H crenennMenblne d,Takux uro dbyuxknus H obparuma, u jag dyakimun H 1
cupaseauso ycaosue deg(H ') < max {deg(G), deg(H)}, 10 (n,n)-byukuus F' = F+ Ag
Oyzser pazsokuMoii mist oboii addunuol (n, n)-Gynknnu Ay .

Takzke Oblia 1OJTyYeHA KOHCTPYKIUS, KOTOPasl IIO3BOJIAET JUIsl JIIOGOTO 1 MOCTPOUTH
KJIACC PA3JIOKUMBIX BEKTOPHBIX OyJIeBbIX (DYHKIMI TPeTbell CTereHH.

Teopema 2. Ilyctb 4,j,p,q € {1,.,n} — ugucaa, takume 4910 @ # j w p # g,
{I;}2_,, {1 }"_, — HabGOPHI TPOU3BONLHBIX THHEHHBIX OYIeBHIX (DYHKIWMI OT N IepeMeHHBIX,
takue 910 deg(x,z,(li(x) + lj(x))) = 3, Y(z) = (y1(2), ..., yn(x)), t1e yi(v) = zpxq + li(2)

npu k= 1,...,n, x € F}. Torna paznoxumoii siBisiercst BekTopHas Oyaesa dyukuus F(z),
OIIpeIe/IEHHAS CJIeYIOMUM 00pa3oM:
Si(z) Tpq(li(x) +1;(2)) + 2ptq + Li(2)l;(2) + 11 (Y (z))
Flz) = fa(z) 2ptg(li() + 1;(2)) + wprg + li(2)l(2) + 15(Y (2))
ful2) wpq(li(2) +1(2)) + 2ptq + Li(2)l;(2) + [, (Y (2))
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Pintus G.M. ON DECOMPOSITION OF VECTORIAL BOOLEAN FUNCTION
IN COMPOSITION WITH TWO VECTORIAL FUNCTIONS . The condition of
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preserving the possibility of representation the vectorial Boolean function as a composition
of two vectorial Boolean functions of lower degrees after extended affine transformation
was proved. The construction of a vectorial Boolean function of the third degree from an
arbitrary number of variables that is decomposable is presented. Also a computational
experiment was conducted, which proved that all vector Boolean functions of the third
degree in three variables are decomposable.

Keywords: vectorial boolean function, decomposition, threshold implementation
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20XX HazeaHwne pasgena xypHana X(X)

VIIK 519.7 .
O IITPUMEHEHUNN SAT-PEINITATEJIEN B KPI/IHTOAHAJII/I3

. A. Codponosa, K. B. Kaarun

Hosocubupckuiti 2ocydapemeennniti yrusepcumem, Jabopamopus xpunmozpaguu JetBrains
Research, Hosocubupcx, Poccus
Huemumym mamemamury umeny C.J1. Cobosesa

E-mail: d.sofronoval@g.nsu.ru, Kalginkv@gmail.com

B pabore mpencraBieH MpOrpaMMHBIN KOMILIEKC, MO3BOJISIONINI TPe0OpPa30BhIBATH
ommcanune kpunrorpadudeckoil 3agaqau (mmdp, Xam-GyHKIWs, TOUCK KpHUIITorpadu-
yeckux yukiuit) 8 KH®. B nanbueiimem SAT-perarensb ycraHaBIMBaeT UCTUHHOCTD
dOpMyJIBI U HAXOJUT O3HAUYMBAHUE IepeMeHHbIX. OQTiIndnuTe/bHbIe 0COOEHHOCTH JIaH-
HOIl pa3spaboOTKM - YHUBEPCATBHOCTD, MaJblil 00beM ucxoguoro koja (300 crpok C+-+),
Jierko MojinduImpyeMast U paciiupsieMas peajn3alius.

Kimrouesbie caoBa: xpunmoananud, SAT-pewamens, amaxa "yeadati-u-sviuucau”.

B ocroBe o71HOrO M3 METOMOB aHAIN3a CUMMETPUYHBIX MIIMPOB JIEXKAT HCIOTH30BAHNE
SAT-pemaresneit. s 9T0ro mexoaubiii mmdp win X3MM-(QyHKINA 3aIUCHIBAIOTCA B BUJIE
JIOTHIECKON (DOPMYJIbI, HCTHHHOCTH KOTOPOit mpejacTouT ycranoButh SAT-perraresto. SAT-
3a/1a9a — 3a/a9a OIPeIeIeHnsT BBIIOJTHUMOCTH Jjiormdeckoit popmyisr [4]. SAT-perraress
— mporpamMma, KOTopas HUINeT O3HAYMBAHME IEePEMEHHBIX, Ha KOTOPOM (hOpMYyJsia MCTHHHA.
Jloruveckast popmyJia 3aUCHIBACTCS B KOHBIOHKTUBHOM HOPMaIbHON (hopMe (KOHBIOHKIUST
JIM3BIOHKIMI epeMennbix, jgajgee — KH®). ssectro, uro sra 3anada NP-nonas. Cye-
CTBYET JI1 B OOIEM cJIydae aJrOPUTM ITOUCKA TTOJIXOJIAINIEr0 3HAUEHUS IePEMEHHDBIX He W3-
BecTHO. [ToncK HAYaIbHBIX 3HAYEHUN, TIOJIAIOIINXCS UCCIIEYEMOMY AJITOPUTMY, KOTOPBIE siB-
JISTIOTCsI PEIieHreM TOCTaB/IeHHbIX 3a/1ad, mpou3Boautcsa SAT-permarenem. SAT-pemaress
He TapaHTUPYeT, YTO O3HAUNBAHNE HAMIeTCs 3a MOJINHOMUAIbHOE BpeMs. OTHAKO IS MHO-
rUX MPAKTHYECKUX 3a/1a9 TaKOH IMOJIXOJ MO3BOJISET ONPEIeNaTh BBIIOJHUMOCTL (DOPMYI
¢ ThIcgIaMu 1epeMeHHbIX. JjIs mpoBesieHnst KpunroaHaansa ¢ momornbio SAT-permaresis
HEOOXOIUM TOJIBKO MEXaHU3M JIJIsI IIPEJICTABICHUS KPUIITOIPADUICCKUX AJITOPUTMOB B BU-
e KH® B dpopmare DIMACS.

Ha namabiit MOMEHT CYIIECTBYIOT JiBe Pa3spabOTKU C Pa3HLIM IOJXOJI0M, JOOUBIIAECT
XOPOIIUX PEe3YyJIbTATOB B PeNIeHU: TPOOJIeMbl aBTOMaTH3aImu Kpuinroanaam3a: Grain of
salt [I] u Transalg [2].

Transalg yHuBepcaJieH u 1mo3BoJisieT CBOIUTD K 3a/1a1e O BBIIIOJIHUMOCTU HE TOJBKO KPUII-
TorpadudecKkre 3a/a9r, HO U HEKOTOphIe 3ajadu Ononadopmaruku. Onucanue mudpon
IPOUCXO/IUT Ha CHeInaJbHOM CH-II0JIOOHOM si3bIKe ¢ rociieaytomeit reneparmeit KHO . Vixke
peaszoBanbl pajl mudpos u xsm-byskimit [5]. ABagsch MOJHOIEHHBIM TPAHCIATOPOM,
Transalg anajm3upyeT TEKCT OMUCAHUSA C MOMOIIBIO JIEKCHYECKOT0, CHHTAKCHIECKOTO U Ce-
MAHTUIECKOI'O aHAIM3aTOPOB, UTO JIEJAeT €ro JOCTATOYHO CJIOXKHBIM JIjIs MOIUMUKAIIUN 1
paciupeHus.

Grain of Salt (mamee — GoS) — mporpaMMHBINH KOMILJIEKC ONMUCAHUS MOTOYHBIX ]~
POB 1 TIOCJIEYIOMEr0 aBTOMATHIECKOTO POBEIEHNsT aTakn ' yraiaii-n-Beraucyin'" | KOTOPBIi

'Pa6ora BeIIOIHEHA IpH noaAepKkke MaTemarmuaeckoro LlenTpa B AKaeMroposxe, coramesnue ¢ MuHu-
CTEPCTBOM HAYKH U BbIcIero obpasoBanus Poccuiickoit @emepariun zHomep 075-15-2019-1613 u maboparopun
kpunrorpadun JetBrains Research.
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paspaboras asrop cryptominisat [3], M. Soos. [laHublii BApUAHT XOPOIIO ONTUMU3UPOBAH
¢ OMOIIBI0 KapT KapHo, espresso (JIOrHYecKuit ONTHMHI3ATOD), MPEICKA3bIBAHIEM 3Hate-
HUl IIepeMeHHbIX, 1103ToMy BbixogHass KH® mnmeer menbInnii pazmep u yipoiiaer padbory
SAT-pemarensa. GoS mpenHazHaYeH I OMUCAHUA MOTOYHBIX MN(POB, MOCTPOEHHBIX Ha
6aze peructpon cjasura. JIpyrasi BakHasg 0cOOEHHOCTb — aBTOMAaTHU3allisl IIPOBEJIEHUSA aTa-
ku "yrajait-u-serancaun’ wa mmdp. Asropom [I] yxe peanuzosanst mudper Grain, Trivium,
Bivium, Cryptol u Hitag2. /lannas paspaboTka 1M03BOJISET OIUCATH TOJIBKO IMUQPHI, OCHO-
BaHHBbIE HA PErUCTpax CABUTA U (PUIHTPYIONUX (DYHKIUIX, APYTUe HE MOTYT OBITH IIPE/I-
CTaBJIEHBI B 9TOM IIPOIPAMMHOM KoMILiekce (Hampumep, A5 /1 u3-3a 0TCYTCTBHS MOIEPKKI
if /else KOHCTPYKIMH, JAPyrHe CUMMETPUYHBIE UM U XII-QYHKIIUH).

B nmannoit pabote mnpejcTaBaeT MPOrpaMMHBIN KOMILIEKC, OJJHOBPEMEHHO YHUBEPCAJIb-
HBI, JIEPKO PaCIIMPSEMbIil, IIPOCTON M HMOHATHBINA [T [OJIb30BaTeell (B TOM 4HCIe HA
ypoBue peayim3anun). [Tog kpunrorpadpuieckuMu 3aauaMu ajiee mopasyMeBaeM He TO b
KO 3aJIa4u aHajun3a MudpoB 1 X3M-QYHKIINE, HO W 33/1a9U OUCKa KPHUITOI'PAMDUIECKUX
dyHKIHI, onpejieieHus SKBUBAJIEHTHOCTH OYJIeBbIX U BEKTOPHBIX (DYHKITHIA.

OcHoBHasI njiest 3aKJII0YAETCS B TOM, ITO KpunTorpadudeckas 3ajada (aJropuT™ Ui
MHOYKECTBO OI'DaHUYEHUiT) onuchiBaeTcst Ha si3bike C+4+4 ¢ MCHOTB30BAHUEM CIENNATHHBIX
kJtaccoB varBool u varlnt, y kKoropbix nepeonpejieniensl Bce onepatopsl. [lomumopduszm B
C++ 1mo3BoJISIET TIepPeoIpeIe/TiTh PAdOTy OIEePaTOPOB JIJIsi HOBBIX TUIIOB TaK, ITO IPHU BbI-
HOJIHEHUH HEKOTOPBIX JIeficTBIil HaJl JanHbIME TipoucxoauT dpopmuposanre KH® (B 3aBucu-
MOCTH OT ONEepAIil JT0OABJISIIOTCS PA3Hble KOHCTPYKIMN ) UK YK€ PeasibHOe UCIIOJTHEHUE aJl-
roputma. C IIOMOIIBIO TapaMeTPOB HACTPAUBAELTCS PE3YIbTAT PAOOTHI — BHIUNC/IEHIE BBIXO/I-
Horo 3HavdeHus nian 3anoaHenne KH®. Takke ecTh BO3MOKHOCTh OTMETUTh KOHCTAHTHOCTD
ornpejiesieHHOro 3uadenns varBool s ontumuzarun BeixogHoit KH®. Pabora mporpammbr
IIOCTPOEHA Ha, ollepalusx, 00padaThIBAIONINX HOBbIE TUIIBI U HessBHO (opmupyionux KHO
Ha, OCHOBE JIOTMKH olepalyii. 9To obecrednBaer MpocToTy paboThl ¢ CHCTEMO, BO3MOXK-
HOCTb IIOCMOTPETH KOJI IIPOI'PAMMBbI U CIIEINAIN3UPOBATh OIMUCAHKE I10J] CBOM KOHKPETHbIE
zaiaan. HeMaloBaXKHBIM TLTIOCOM SIBJISIETCS TO, ITO OOJIBIMTUHCTBO MIM(POB ONMUCHIBAIOTCS
na ga3bike C. Kpunroanayms takux mugpoB JIETKO OCYIIECTBIISETCS B IPOEKTE 3aMEHOM
THUIIOB JIAHHBIX B KOje. Takke 3TOT (paKT MO3BOJISIET YTBEPXKIATH IMPABUIHLHOCTD PAbOTHI
sJipa, BeJlb OTJIAUTh KOJ MOYKHO Ha IIPUMepax BXOJIHBIX U BBIXOJHBIX JAHHBIX MHIMPOB,
IIPE/IOCTABIEHHBIX UX co3jarenamu. [Iporpamma sBisieTcs TUOKOM, MCIIOJIb30BaHUE BCEX
BO3MOKHOCTEH s3bika C-++ Jle/1aeT peam30BaHHbBIN [IPEIMETHO-OPUEHTUPOBAHHBIN sA3BIK
Kpaitne (OyHKIIMOHAJIBHBIM — IIUKJIbI, YCJIOBHBIE OIIEPATOPHI, MAab/JIOHBI — BCE ITO MO3BOJISET
ONHUCHIBATH AJITOPUTMBI Pa3HOM CJIOKHOCTU. TakzKe HEeOOXOJIMMO OTMETHTH BO3MOXKHOCTH
O3HAYMBAHUA TEPEMEHHBIX WJIM PeaIM3allii JAPYTUX YCIOBUI Ha JIFOOOM IIare OInucaHus
3aja4un. B KadecTBe JONOJHUTEIbHBIX BO3MOXKHOCTEH Yy Ke OIMCaH MeXaHU3M PEernucTpoB
JIMHEHOT'O CJIBUTA C OIPEIeJeHHBIMI METOIaMU, TO3BOJISIONINX PEeATU3AINI0 aJITOPUTMOB,
OCHOBaHHBIX Ha 9TOH TexHosioruu. PeaymzoBanb! mudpbl, npuBeieHHbIe B onucanun GoS u

mudp A5/1.
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Sofronova D.A., Kalgin K.V. ABOUT SAT-SOLVERS IN CRYPTOANALYSIS.
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B pabore mpeoxeno 06061enune koucrpykiun Jodbepruna 1995 r. iy BbICOKOHE -
HeIHBIX cOATaHCHPOBAHHBIX OysIeBbIX (pyHKnmit. VccaemnoBan cmekTp Youma-Aamapa
U TIOJTYI€HBI OTIEHKY CIIKETPAJIBHOTO PAJUYCa MoayunBIuxcs GpyHkinii. JJokazana Tou-
HAs BEPXHSIS OINEHKA Ha CIEKTPAJLHBIN paanyc (HMXKHsSA OIeHKa HEJTUHEHHOCTH), U
MPEJIONKEH CIOCOD MOCTPOUTH COATAHCUPOBAHHYIO (DYHKITUIO OT 21 IMePEMEHHBIX TPH
oMo cOATAaHCUPOBAHHOW 6 0T N — k TepeMeHHBIX CO CIEeKTPAIBHBIM PaIHYCOM
2" 4+ 2% Ry, tiie Ry - crieKTpasibHBI pajmyc 6.

KimroueBbie ciioBa: 6y.4e6bt (pynryuu, 6eHm-@Gynruuy, c60iGHCUPOSAHHOCNL, HeAU-
HETHOCTD, CNEKMparvhbil paduyc

B pasmumunbix kpuntorpaduvecKux aJropuTMaX 4YacTO UCHOJIb3YIOTCS OyieBbl (DYHK-
muu. HenmHeltHOCTS — OIHO M3 OCHOBHBIX JIJIsT HUX CBOHMCTB. OHO MOKA3BIBAET, HACKOJIBKO
XOPOIIO (PYHKIIMIO MOXKHO IPUOJIU3UTH HEKOTOPO# sinHeiinoit pynkuueii, paborarb ¢ KOTO-
poii 3HaunTebHO mporre. [1Tudp Moxker craTh ya3BUMBIM K JIMHEHHOMY KPUIITOAHATIAZY
pH HU3KOW HEJIMHEHHOCTH J1ayKe OJHOH ero vacTu. [Ipumepom Kpunrorpaduyaeckoro aaro-
pUTMa, CKOMIPOMETHPOBAHHOTO CBOMMH KOMIOHEHTAMHU € HU3KOM HEJMHEHHOCTHIO, MOYKET
HOCIYKUTh cTaphlii crangapr mudposanua CIIIA — DES.

Bseaém neobdxopumbie onpejesenus. [peobpasosanue Yorwua—Adamapa Oynesoit dbynk-
unn [ oupegensiercss kak Wy(a) = ZIGFQ,(—l)f(z)“xm, a € FYy, cnekmparvhod paduyc
Ry, = gé%§|Wf(a)| u neaurnenocms Ny = 2"1 — R, /2. Benwm-pynryuamu HA3BIBAIOTCA

2

(GyHKIMU OT YETHOTO UHC/Ia HEePEMEHHBIX ¢ MAKCHMAJILHOW BO3MOZXKHON HEJTHHEIHOCTDHIO.
Onn Goun Brepsbie onucanbl B [1]. [Toxpobryto wHbOpMaIuio 06 sToM Kiaacce QyHKIHI
MOKHO HaiiTu B |2, 3. ByjeBbl byHKIWMU f U g OT N ePEMEHHBIX afurHo IKEUBAAEHIHYL,
ecain Jijist Beex x BuimoJtaeHo g(z) = f(Ax+0b), rae A — HEBBIPOXKIEHHAS] MATPHUIIA pa3Mepa
n X n,ab — BEKTOD JJIUHBI N.

B npakTunueckux messx Takzke dacto Tpedyercd drodbl (DyHKIUs OblLIa cOaAaHCUPO-
sanrotll — npuHuMana 3uadernnd 0 u 1 Ha oJHOM U TOM Ke Yucje aprymenToB. Ho makcu-
MaJIbHOE 3HAUEHNE HEeJIMHEeHHOCTH cOaJaHCUPOBAHHBIX (DYHKIINI HEN3BECTHO HATMHAS YIKE C
BOCHMH MTepeMeHHBIX. JIydIiie oleHKN MoIyIaloTcsd KaK CJIeJICTBIe KOHKPETHBIX KOHCTPYK-
Uit cOaTaHCHPOBAHHBIX (DYHKITHIA.

Koncrpyknusi, onucannasi 1o66epruaom B 4], ocHoBana Ha MOAubUKAIIE HOPMAJIb-
HBIX OeHT (DyHKIMI — QYHKIUI OT 21 TePEeMEHHbBIX, TOCTOSHHBIX HA HEKOTOPOM adGuHHOM
nognpoctpancTee L pazmeproctr n. CyTh KOHCTPYKINA 3aK/II0YAETCA B 3aMeHe 3HAUEHHIT

!Pabora Bumonmena B pamkax rocymapcrsentoro saganna UM CO PAH (mpoext Ne 0314-2019-0017)
npu nojiepkke Poccuiickoro @onga @yumamentanbubix Uccnenosanuit (mpoekr 20-31-70043) u srabopa-
topuu kpunrorpadun JetBrains Research.
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. A. Cytopmur

OeHT-(OYHKIIMKE Ha MOANPOCTPAHCTBE [ 3HAUYEHUSIMH cOATaHCHpOBaHHONW (PyHKIUU 6 OT n
nepeMeHHBIX. [Ipu 9TOM CrHeKTpasibHBI paauyc moyduBIeiics coasancupoBanuoil (pyHk-
unu O paren Rg = 2"+ Ry, a eé HeJluHeiHOCTh, cooTBeTcTBeHHO Ng = 2271 —2n=1 _ R, /2.
Taxxke B [4] 6bL1a chopMyIUpOBaHA He OIPOBEPIHYTAs 0 CHX [IOP THIIOTE3a O HECYTeCTBO-
BaHUU cOAJAHCUPOBAHHBIX (DYHKIHHA ¢ HEJMHEHHOCTBHIO BBINIE, YeM MOXKHO HMOJYUYUTH IPH
MOMOIIK TON KOHCTPYKITUH.

B pabore paccmorpeno obobmienue KoHcrpykiuu Jlobbepruna, uciosib3yioiiee OGeHT-
dyHKIMN ¢ OJIU3KUMHA K HOPMAJIBLHOCTH CBOHCTBAMU, & UMEHHO OeHT-(DYHKIUU OT 2n nepe-
MEHHBIX, TPUHUMATOTIIIE TOCTOSTHHOE 3HAYEeHNEe HA HECKOJIBKUX CABUTAX HEKOTOPOTO MOIIPO-
crpancTBa L pazmeproctu n—k, 31ech 0 < k < n—2. Tak kKak addunHAS IKBUBAJIECHTHOCTD
COXpaHsIeT HEJTUHEHHOCTHh U cOATAHCHPOBAHHOCTH, MBI MOYXKeM 06€3 OTpaHuYeHHsT OOIHOCTH
paceMarpuBarh Takue 6enr-byukunn B Buge f o FiF x FIHF 5 Fy, s xoropoit cyrme-
crBytor noamuoxkecrsa Iy, [} C Fyt* mommoctn |Io] = 2201 4 2k=1 || = 22k—1 — 2k—1
JIJIST KOTOPBIX CIIPaBe JINBO:

f(x,y) =0, mpuy € I

fle,y) =1, upuy € L4

Takoe npejcraBIeHne TPAMO CBSI3aHHO ¢ KOHCTPYKIHeH Buja f@ Ind; ., moapobuyo nH-

dbopmaruo 0 KoTopoit MoxKHO HaiTh B |5, 6, 7|. 31ech [ — ayanbhas k f dbyukus, cM.[3].
ITpu momontu GeHT yHKIMU TaKoro Buia u Habdopa 0,, y € [y U I; cOasaHcupoBaH-

HbIX (PYyHKIUHE OT N — k mepeMeHHbIX cTpouTcs 00o0mawas KoucTpykimio Jlobbepruna

byurnma O:

6,(x), upu y € [y U1

Olz.y) = f(z,y), wunade.

(1)
[Ipu k = 0 onmcannas KOHCTPYKIIHS MOJTHOCTHIO COBHaMaeT ¢ KoHcTpyknueir Jlob6bepTu-
Ha. [Ipum k& = 1 ona Takyke 3KBHBaJieHTHa KoHCTpyKimu Jlo6Oepruna. Ias dyakimn O
BBIIIO/THEHHbI:

Teopema 1. Dynkuusa © suna (1) sBasiercs: cOaTaHCHPOBAHHON QYHKIHEH 1 €€ KO-
apdunmentsr Yosrmma-A gamMapa BEIAUCISIOTCS 110 (hopmyIie

We(a,b) + > (=1)®¥ W, (a), eciua#0
W@ (a, b) = yelgUlg .
0, NHAaYe

CaencrBue 1. CrhekrpaibHblii paguyc © He npeBocxoaut 2" + >
BCeTJa MOZXKHO BBIOPATH 0, IPH KOTOPHIX OIEHKA JOCTHTAECH.

yeloUl Ry, npmiem

Teopema 2. Ilycrp 0 — cbanancuposannad dyHKIHUA n — k IepeMeHHbIX, 0, = 0 11pu
yely,nt,=001opuyc . Torna

Ro = 2" + 2FRy.

[Tonyuusnreecs Rg 3aBucut ot Ry, k u n. HecMmorpsa Ha TO, uTo 0 sBisdercd (pyHKuei
oT n — k mepeMeHHBIX, HAWIYUIINNA pe3yabTaT gpocturaercs npu k = 0, To ecTh B cIyvae,
omucanunoM /lo66eprunoM.
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Heozarnasnenunas cekyms

VIIK 519.7

CBA3b ME2KZIY KBATEPHAPHBIMU 11 KOMITOHEHTHBIMN
BYJIEBBIMU BEHT-®YHKIINAMMN!

A. C. ITamopeHko

B pabore nccnenytorcs KkBaTepHapHble OeHT-pyrrnyun. Pyarnud g : Z) — Z4 Ha3bIBa-
eTcsl KBaTepHAPHON (pyHKIHEH 0T n mepeMeHHLIX. B pabore moka3amo, 9TO CBOHCTBO
kBarepuapuoii dbyuximmu g(x + 2y) = a(x,y) + 2b(x, y) ObITh GeHT HAIPAMYIO HE 3aBHU-
CUT OT TOI'0, sBJsieTcs jiu pyHKiuu b u a G b 6ysiesbivu 6enT-pyHuKiugymu. [losryueno
KOJITYECTBO KBATEPHAPHBIX OeHT-(DYyHKIUI 0T OHON U JIBYX HMEPEMEHHBIX ¢ ONACAHIEM
cBoiicTB OyseBbix byaknuit b u a G b. llpescraBiens MpocTbie KOHCTPYKITUH KBATEP-
HapHBIX 6eHT-(PYHKIN OT JI0OOTO 9nc/a MepeMeHHBIX.

KoroueBble ciioBa: xeamephaphvie Gynruyuu, bysesv gynryuu, benm-Pynryuu

[Iycts (x,y) obo3HAYAET CKATAPHOE MPOU3BEJICHHE JIBOMIHBIX BEKTOPOB 110 MOJYJIIO 2
(obozHATMM ), a T.y — CKAJIIPHOe MPOU3BEIEHIe BEKTOPOB 110 MOIYJIIO 4.

Oyukmusa f : 25 — Zo Ha3BIBaeTCA 0Yae60U pynryued oT n mepeMeHHBIX. [Ipeobpasosa-
Huem Yorwa—Adamapa 6ysesoli pynxyuu f OT n mepeMEHHBIX HA3BIBACTCS HEJ0IHCIeHHAS
bynkius Wy(x), 3anannas Ha MHOXKeCTBe Z PaBEHCTBOM

Wy(z) = Z (—1)(@n@f ),

yGZg

Bynesa dynkuus f or n (4eTHOE) mEpeMEHHBIX Ha3bIBaeTCsi Oenm-@pynryued, eciu
(W (z)| = 2"/2 ans moboro x € 7.

[MTucpel, B KOTOPHIX UCHOJIB3YIOTCA OeHT-QYyHKINT, O0Jee yCTONYUBBI K AUHETHOMY
kpunmoarasudy |1, moromy uTo GeHT-DYHKIME KpaiiHe MI0X0 AIPOKCUMAPYIOTCst addrH-
HBIMU (pYHKIUIMA. BeHT-QYHKIUE HCIOIB30BaINCh B au3aitne OGiaounoro mmdppa CAST
KaK KoOpjaumHaTHble DYHKIUKA S—OJI0KOB 2|, a TakKe jjist IOCTPOCHUST PDErHCTPa CABHIA €
HeJIMHeHHOH 06paTHO# cBsI3bi0 B MoTouHOM 1ndpe Grain [3]. Tak:ke GeHT-GyHKINT CBSA3a-
HbI ¢ HEKOTOPHIMI OObEKTaM¥ TEOPUN KOJWPOBaHWS, HAMpuMep, ¢ xodamu Puda-Masnrepa
[4].

Oyukuus g : 2§ — 74 HA3BIBALTCA Keamephaphol @dyHnkyueld OT N mepeMeHHBIX [5].
IIpeobpasosarue Yorwa—Adamapa keamepnaproli Gynryuy ¢ ONPEIETACTCS CJETYIONIIM
obpazom:

Wg(x) _ Z ix.y+g(y)7

yeLy

rjie '+’ O3HAYaeT CJIOYKeHHe IO MOJIYJIo 4.

KBareprapnas GbyHKIWS ¢ OT n MepeMeHHBIX Ha3bIBaeTcs Oenm-@yrkuyued, ecan
(W, ()| = 4"% s moGoro = € Z7.

[Hesibio ganuoil pabOTHI ABJISETCA U3YyYEHUs CBA3U CBOUCTB ObITH OEHT KBaTEPHAPHBIX U
Oynesbix dynkimit. Jta 3a7a49a Oblja BHEpBBIe HOCTaBIeHa B padore [6] (cm. Takxe [7]).

Kaxknas kBaTtepHapHasg OYHKINS g OT N MepeMEeHHBIX MOYKeT ObITH Mpe/ICTaBIeHa JJIs
JIIOOBIX T,y € Z§ cIelyIoImuM 00pa3oM:

g(x +2y) = a(x,y) + 2b(x,y),

! Pabora BemosHena B pamkax rocyaapcersernoro 3agarus UM CO PAH (mpoext Ne 0314-2019-0017) mpu
noxgepxkke Poccuiickoro @ouga Pyumamentanbabix Uccnenoanuit (mpoexr 18-07-01394) u naboparopuun
kpunrorpadun JetBrains Research.
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r7ie CJIOYKeHNEe MPOU3BOIUTCS 110 MOLY/II0 4, a PyHKINN a U b — 3T0 Komnonenmmwie OyI€BbI
dbyHKIMK OT 2N MepeMeHHBIX.

Vreepxkaenue 1. s mo6oii kBarepHaproil dbyukiun g(x +2y) = a(z,y) +2b(z, y)
OT OJTHOI TIepeMeHHOM, T11e X,y € Zsy, CUPaBeJINBO, YTO ¢ — KBaTepHApHAsa OeHT-QYyHKIHS
TOLJIA U TOJBKO TOTIa, Koraa b(z, y) — 6enr-dyuknus u a(z, y) pasua 0, 1, x uaun 2H1. Kpome
TOr0, €CJIM ¢ — KBaTepHapHas GeHT-PYHKIHU, Toraa b u a B b — Oy/1eBbl OeHT-(DYHKIIHH.

KoMIibioTepHbie BBIYHCICHHS TTOKA3a/I1, 9T0 KOJUIECTBO KBaTepHAPHBIX OeHT-(hyHKIIHiT
OT OJIHOU MepeMeHHO# paBHO 32.

KonugecTBo kBaTepHapHBIX OeHT-(byHKIMiT pu n = 2 paBHo 200704. Cpean aux 98304
dyuKImMit TaKuX, 4TO HU OHA U3 OysieBbIX DyHKIMI a, b u adb ne gapiagercsa benr-pyHkuei,
HO mipu dToM uta 3072 u3 wHux a auneitnas. CymectByor 36864 dynkmumm Takux, 910 b
ua @b — 6eHT-pYHKIMH, HpH TOM Jid 33792 m3 HuX QyHKIHA a HeJTUHEHHas, a Jiid
2304 u 768 a aBaseTcs auHeitHONW DYHKIMeH WM KOHCTAHTON cOOTBeTCTBeHHO. KosmaecTBO
KBaTepHAPHBIX (DYHKIIHIL, /11T KOTOPBIX KazKaasd u3 dpyuknuit a,b n a @ b — 6eHT-pyHKIusd,
paBuo 16384. [Ina ocrasmuxcs 49152 dbyuknumii a gpasgercda oenr—dynxnueit, a b u a G b
HeJInHelHble Oy1eBbl (DYHKITUN.

Teopema 1. Ilycts g(x+2y) = a(z,y)+ 2b(z,y) — kBarepHapHast GeHT-(DYHKINS, T1e
x,y € Z3 u a,b — OyseBbl dyHkiuu or 2n nepemenubix. Torga b u a & b — Hesuneitnbe
dpyHKIMN TTpU JTI0OOM YHCJI TepeMeHHbIX 1 > 1.

Caemyronue JBa yTBEPXKJICHHUS MOKA3BIBAIOT, YTO MEXK/y CBOHCTBaMU ObITH OEHT KBa-
TepHapHOil (DYHKIMK ¢ 1 ee KOMIIOHEHTHBIX Oy/1eBbIX MYHKIHH b 1 a B b HeT mpsiMOoil CBsI3M.

YrBepxkaenue 2. ng goboro n > 2 cyliecTByeT KBaTepHapHas OeHT-(DyHKINA
g(x+2y) = a(r,y)+2b(r,y) or n uepemennbix, rjae b u a®b He apisirorcs 6eHT-QDYHKIMIME
OT 2n TlepeMeHHBIX.

VYrBepxkaenue 3. st jio6oro n cymecrByer kBarepuapaas dyukuus g(r + 2y) =
a(x,y) + 2b(z,y) or n mepeMeHHbIX, KOTOpas He gBJseTcst GenT-dyHKImed, Korna b u a G b
— OyseBbl O€HT (PYHKIUKW OT 2n TIepeMeHHBIX.

Jlajiee npejcTaBUM JBe MPOCTbIE KOHCTPYKITUU J/Isd KBaTepHAPHBIX OeHT-QYHKIHUH OT
JIIOOOTO YHUCJIA ePEMEHHBIX.

YrBepxkaenue 4. KparepHaphuas (pyHKIUS OT N IIePEeMEHHbBIX

9(T1 + 2Tpi1y ooy Ty + 2w0y,) = Z 20,21 + cxj,
i=1

rae ¢ € Zo, j € {1,...,n} u’+ — ciaoxenue mo Moaymo 4, aBiagerca GeHT-DYHKIHed 1pu
JIIOOOM M. 3aMeTUM, YTO MPH ITOM

n
b(xh o $2n) = @ TiZitn,
i=1

n
a(z1, ..., Tan) B b(21, ..., Tay) = P T Tign S cT;
i=1

— O6eHT-PYHKIHN OT 21N IePEMEHHbBIX.
VYrBepxkaenue 5. Ilycrb g(x+2y) = a(z,y)+20(x,y), vae x,y € Z5 u a u b — GyJiesbl

dbyHKIMH OT 2N HepeMeHHBIX, sBjsiercs OGeHT-GyHKIMeR, Torga dbyskmus ¢ (x + 2y) =
3a(x,y) + 2b(x,y) TakKe sBIASETCS KBATePHAPHON GeHT-DYHKIEH OT n > 1 mepeMeHHBIX.

OrmeTnM, UTO yTBEPZKI€HNE BEPHO U B OOPATHYIO CTOPOHY.
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Shaporenko A.S. CONNECTIONS BETWEEN QUATERNARY AND COMPO-
NENT BOOLEAN BENT FUNCTIONS. This work is about quaternary bent func-
tions. Function g : Zj — Z, is called quaternary on n variables. It was proven that
bentness of a quaternary function g(z + 2y) = a(z,y) + 2b(x, y) doesn’t directly depend on
the bentness of Boolean functions b and a & b. The number of quaternary bent functions in
one and two variables is obtained with a description of properties of Boolean functions b and
a @ b. Two simple constructions of quaternary bent functions in any number of variables
are presented.

Keywords: quaternary functions, boolean functions, bent function.
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VIK 519.7

Pa3zpadoTka MeT010B aHAN3a OJIOKYEITH ceTel

. A. bagep
HoBocubupckuii rocyjapcTBEHHbI YHUBEPCUTET

B nanHoIi paboTe paccMaTpHBaIOTCs TpaH3akuuK O10k4ueH cetr Ethereum. Mnes
UCCJIEIOBAHMS COCTOUT B TOM, YTOOBI IPOBECTH BPEMEHHOI aHAIM3 TPaH3aKIIUii
6Js0kueiiH cet Ethereum 1 oLeHNTD, Kak U3MEHSJIOCH TIOBEJCHUE aKKayHTOB CO
BpeMeHeM. [ImannpyeTcst npoBeCcTH aHa M3 KOHTPAKTHBIX aKKaYHTOB, UX CO3JJaHUs
Y Ha3HaueHU S, a TaKKe MpoBecTH aHam3 Tunos Ethereum-tokeHoB. 910 momoxer
MOHATB KaK M JJIs1 Yero UCTIONb3YyI0T KpunToBamoTy Ethereum.

Bbaokueiin - BRICTpOSHHAS TIO OIPeIe/ICHHBIM IIPaBMJIaM HENPEephIBHAS TTOCIe-
JoBaTeslbHasl LIENOYKa (CBSI3HBIA CIHMCOK) OJIOKOB, cofepkKalmx MH(GOPMAIHMIO.
OcHoBHasl 33/1a4a TEXHOJIOTMHY OJIOKYEHH - IoBEpUTEsIbHAsI Iepeiaya COOCTBEHHO-
CTH Ha I(PPOBBIE AKTUBHI B HEOBEPEHHOM cpesie 6e3 MOCpeAHUKOB. T pan3akyust -
€IMHCTBEHHBII CIOCO0 N3MEHUTDb COCTOSIHUE JJaHHBIX. B10K - CTPYKTypa JaHHBIX,
MO3BOJIAIIASA XPAHUTH CIIMCOK TpaH3akUuid. Kpunmoeanoma - 310 peanusanus
6Js0KueiiH. Mukcep - cepBUC aHOHMMM3ALMM, KOTOPBII YCJIOKHSET WIM JiesaeT
NPaKTHYECKH HEBO3MOKHBIM OTCJIC)KUBAHHUE TPAH3AKIMI B CHCTEME OJIOKUYEIH.

B paboTe npoBeieH BpeMEHHO! aHaIU3 110 KOJIMYECTBY TPAH3aKLHM, OTIIPAB-
JICHHBIX HA a/Ipec, ¥ KOJIMYECTBO TPAaH3aKIIMH, OTIIPAaBICHHBIX C HEero. Bbl1 cocTas-
JieH rpaduK, MOKa3bIBAOIIMN KOIMYECTBO aJpPECOB C ONpeAeeHHBIM HabOpOM
UCXOAAMMX ¥ BXOASIMX TpaH3akimil. Ha ocHoBe aToro rpaduka Obl1 3aMeueH
AQHOMaJIPHBIIl POCT YHCJIa aJIpecoB C ABYMsI OTHPABUTESIMUA M TpeMsl HOJydaTe-
ssivu ¢ pepast 2017 mo anpens 2018. Bput mocTpoeH rpad 3THX agpecoB, UTO
HIOKa3aJIo0, YTO 3TH aJpeca CBsA3aHbI B OOJIBLION MUKCEP.

B paboTe 6bu1 poBeIeH BpeMeHHO# aHai3 TokeHoB ERC-20, ERC-223, ERC-
721, ERC-827 Ha IpegMeT TOro, KaKue TOKEHBI BBIITYCKAITCS U KaK OHU UCIIONb3Y-
10Tcs1. B pe3ysbrare BUIHO, UTO MHTEPEC K CO3/JaHMIO HOBBIX TOKEHOB HE CIIa/IaeT.
To ke KacaeTcs KOJMYECTBa MEPEBOAOB TOKEHOB, YTO MOKA3bIBAJIO X aKTUBHOE

UCIIO/B30BaHME.
Pabora BrIMOMHEHa Tipu MoAzepxkKe nadopaTopun Kpunrorpadru JetBrains
Research.

[1] Buterin, V.: Ethereum: a next generation smart contract and decentralized applicationplatform
(2013). URL: https://github.com/ethereum/wiki/wiki/White-Paper

Hayunsiit pykoBoguresns — kanj. ¢us.-Mat. Hayk H. H. Tokapesa, I1.A. Ca3oHoBa
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VIK 519.7
JIerkoBecHble mmcpsl THna Jlas-Macen

A. A. Benoycosa
HoBocubupckuii rocygjapcTBeHHbIN YHUBEPCUTET

B nanHO# paboTe paccMaTpuBalOTCs OJIOYHbIE HTEPATHBHBIE IH(MPHI, OCHOBA-
Hble Ha ceTr PeiicTens v Ha abTepHATHBHOM cxeMe — cxeme Jlas-Maccu. nes nc-
CJIe/IOBaHMSI COCTOUT B TOM, YTOOBI paccMOTpeTh mdp Simon 32 / 64, OCHOBaHbI
Ha ceTu PeiicTens, U CpaBHUTB €ro KpUIITOrpauieckre CBOHCTBA CO CBOHCTBaMU
aganTauuu cxemsl Jlas-Maccu Ha MecTo cetu Peictensd. PesynbraTsl nuddepen-
UABHOTO KpHITOaHanmu3a mmudpa Simon Gbutd B3sATH U3 padoThl [2], rae 6bu1o
HOJTyYeHo, uTo Ajtst Simon 32/64 MakcuManbHasi BEPOSITHOCTh auddepeHimaa
nocJie Npoxok/eHus 12 paynjos cocrapiser 2730,

OpuH payHa cxeMsl Jlas-Maccu B €€ OpUrMHaJIBHOM BHJE 3alIMCBIBAETCS Kak
(yr,yr) = (2 ®F(xr®xR), v ® F(rL ®xR)) ¥ B JaHHOM Cllydae ecTb Cylle-
CTBEHHBIA HEIOCTATOK: IJIst TIOOOro BXona (', L g ) BBIIOIHSAETCS COOTHOLICHHE
xr, ®xr = yr ®Yr, 8 (Y1, Yr) 9TO BBHIXOA payH/a.

B pat6ore [1] ckazaHo, 4TO AJ1s1 TOrO YTOOB! YOPaTh ONMCAHBIIA BHIIIE HEJOCTA-
TOK K CXeMe He0OXOIMMO JOOaBHUTh MEPECTAHOBKY-OPTOMOPHU3M 0.

Onpenexenne 1. [ycts o: Z,, — Z, nepecTaHOBKA Ha Z,,, 0 Ha3bIBACTCS Op-
ToMoppu3MoM Z,,, ecim o + I Tak ke sBJAETCS NepecTaHOBKOM Ha Z,,, rae I -
TOX/IECTBEHHASI MIEPECTAHOBKA.

Torma onuH payHn cxembl OyaeT 3anucad Kak (yr,yr) = (o(zp @ F(xp @
ZRr)),xr ® F(xr ® xr)), a pasHUIa TEKCTOB OyIET 3ammcaHa Kak y;, S yr =
(c(zp®F (2 ®aR))®(xr®F(xr ®agr)))® (v Dar). Mist cpaBHeHUs mud-
pOB GbUT NpoBeIEH AU depeHIMaTbHbI KPUIITOAHATN3 OPUTHHATIBHOM CXEMBI U
CXeMBI ¢ 100aBIeHneM OpToMopdu3Ma.

YrBepaxaenne 1. [Tocne 12 payH1oB MakcuMaibHast BEpOSTHOCTD U depeHi-
ana Juis MojiepHI3UpoBaHHOro mudpa Simon32/64 6e3 moOaBIEHUsT OPTOMOP-
¢usma coctasnser 224, a ¢ mob6apnennem opromopduzma > 2763,

PaGoTa BhINONMHEHa TpU MOJiepX)Ke JlabopaTopun Kpunrorpaduu JetBrains
Research.

[1] Vaudenay S. On the Lai-Massey Scheme. Ecole Normale Superieure,1999.

[2] Abed F., List E., Lucks S., Wenzel J. Differential and Linear Cryptanalysis of Reduced-Round
Simon. Bauhaus-University Weimar, Germany, 2013.

Hayunwniit pykoBonutens — kang. ¢pus.-mat. Hayk H.H. Tokapesa
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VIK 519.7
AHaJIM3 raMMbl, IOPOKIEHHOH (PUILTPYIOLIUM reHePaTOPOM

T. A. bonunu
HoBocubupckuit rocygjapcTBEeHHbIN YHUBEPCUTET
Jlabopatopus kpunrorpaduu JetBrains Research

JLJ1st TOCTPOEHM I MOTOYHBIX MH(POB YaCTO UCTIONB3YIOTCS PETHCTPHI C 00paTHOM
cBs3b10. HanGobliiee pacnpocTpaHeHue MoNyYnusid PEruCTPhl CABUTA C JIMHEHHbBI-
mu oOpatHbiME cBsizsiMu (PCJIOC). PCJIOC cocTout U3 IBYX 4acTeil: OMHAPHBIA
BEKTOP & = (Zy—1, . .. T() IJIMHBI 1 U OIPEJICNIEHHAst HA HeM (PyHKIIUS 0OpaTHON
cesiut f : (Tp—1,...,20) — {0,1}, tme f — OysneBa (pyHKIHSI OT N IEPEMEHHBIX.
OunbTpyIONIUil TeHEPATOP COCTOUT U3 OJIHOTO PErMCTpa CABUra C JIMHEHHON 00-
PaTHOI CBS3BIO JJIMHBI N, IJIS U3MEHEHUsI COCTOSTHUI MCIIONb3YeT MPUMHUTHUBHBIN
MHorouieH. Bynesa dyHkums h(z,—1,...,xo) OyIeT reHEpUpOBATh TOCJIEI0BA-
TeJILHOCTD . PaboTa reHeparopa mpejacraBieHa, Hanpumep, B [1]. Ilycts v =
(Y12 - y2n—1),m0€ h(Tp-1, ..., @0) = Y1, h(Tn-2, ..., T0, f(Tn-1,...,20)) =
Y2, 4 T.1. Tak Kak HylIeBOe COCTOSTHAE HE UCTIOIB3YeTCs, TOIIa KOJIMIECTBO BCeX
BO3MOXKHBIX COCTOSIHUI reHepaTopa paBHo 2" — 1. Torna, OyneBa (pyHKIUS MOXET
reHepupoBath y ¢ neprogom ot 1 no 2™ — 1. B nanHOli paboTe M3y4yeHo, Kak
BBIOOp OysieBO# (PYHKIMU h BIUSET Ha MEPHOIMUYECKIE CBOIICTBA TeHEpUpPYeMOit
~. A VIMEHHO, OTpeesICHO KOJIMYEeCTBO BCeX OYNIEeBHIX (PYHKIMIA h, KOTOpBIE TO-
POXIAIOT MOCJIEA0BATENBHOCTh HE MaKCUMallbHOro nepuoja (< 2™ — 1). Takue
(yHK1IIMM Oy/ieM Ha3bIBATb HENOOXOOSIUUMU.

Teopema 1. ITycme 2™ — 1 = p'p5? ... p%=, 20e p; — pazauunvle npocnivie ye-
Able YUCAd, (i - NONONCUMENbHOE UeN0e YUCAO0, S — KOAUUECINBO UUCeN, YUaChl-
syowux 6 paznodicenuu. Toeda Koauuecmeo HenooOX0OAUUX OYae8blX PYHKUUIL
OM N NePeMeHHbIX 0A51 PUABMPYIOUE20 2eHepamopa PAeHO

2. Y ((=1)fttBetignit Mhopre 0oy
BEZ3,B7#0
20e B=(B1,...,Bs)

PaGoTa BhINOMHEHa TpU MojiepXkKe JladopaTopun Kpunrorpaduu JetBrains
Research.

[1] H. H. ToxapeBa. CummeTpuunas kpunrorpadus. Kpatkuii kypc. — HoBocubupckuit rocygap-
CTBEHHBII yHUBepcuTeT. — 2012.

Hayunsit pykoBoguTesnb — kaHa. ¢pus.-mat. Hayk, gou. H.H.Tokapesa

324



VIK 519.7
Tectnl 1ist SAT-pemaresieii, 0CHOBaHHbIE HA KPUNITOrpa(puYecKuX 3a4a4ax

A. E. [lopoHuH
HoBocuOupckuii rocyjapcTBEHHbIN YHUBEPCUTET
Jlabopatopus kpunrorpacuu JetBrains Research

B nacrosmee Bpems B kpunrorpaduu SAT-perratenu UCIONb3yIOTCS AJs TPOBe-
JeHNs] KpunToaHaim3a cemeiicTa mmgpo Trivium B pabote [1] U HEKOTOpPBIX
noToYHbIX 1mHUGpoB B padore [2]. B maHHOIT paboTe mpeniaraeTcs UX HCIONb-
30BaHME B 3a/jauax MOMCKa KpunTorpapuieckux OyneBbx (PyHKIMI 1 IPOBEPKU
9KBMBAJICHTHOCTH JBYX (byHKLMHA. []715 monmydenHus Habopa OyieBbIX (bopMyI1 ObLTH
UCIIONB30BaHbI CJIEYIONIME MOHATHS U CBOMCTBA:

BekropHas OyneBa pynkuusa F' : Zy — Z5 ABNSETCA 83aUMHO-00HO3HAUHO,
€CJIH BBIIOJHSETCSI OHO U3 CIIEAYIOIIUX YCIOBHIA:

Vxy € ZE Voo € ZY : k1 # x3 — F(x1) # F(22),

Yy e 25 Nx € Zy - F(x) =y.

Bexropnas OyneBa dynkuus F' : Z5 — Z5 apasercs ougbgbepeHyuansho o-
pasHomeproll, ecim 1151 1o0bix a # 0, b ypaBuenue F'(z) ® F(x @ a) = b umeer
He GoJiee § peleHuii.

BekrtopHsle OyneBsl pyHkumn F' u G HasbiBalotcsi EA-3x6uearenmuvimu, eCm
BhINOJIHsIeTCs cienyoiee: G = Bo F o A+ C, tne A, B u C - apdunnbie
¢yHKIHN.

HanHble noHsATUA nipenactapisiorcs B Buge KH® u nopaiotcs Ha Bxon SAT-
pemraresisi. B pesynbrarte ero paboTsl NIPOMCXOAUT O3HAYMBAHUE NIEPEMEHHBIX Ta-
KUM 00pa3oM, 4ToObl (popMyItsl ObUTH UCTHHHBIME. [loTydeHHsli Habop (opmyI
TaKke MOXHO HCIIOJNB30BATh [JIs1 TECTUPOBaHUs paboThl HOBBIX SAT-pernatenei,

CO3IAaHHBIX JUIS1 pellieHUs1 KpUITorpauyeckux 3agad.
PaGora BbIoJIHEHA NPU TO[IEPXKKe JTabopaTopun Kpunrtorpaduu JetBrains
Research.

[1] O.C.3aukun, U. B. Otnymennukos, A. A. CeMEHOB, “OLeHKH CTOMKOCTH U(POB CeMeicTBa
Trivium k KpunToaHaIN3y Ha OCHOBE AJTOPUTMOB PEIIeHHs IPOOIIEMBI Oy/IEBOI BHIIOTHUMO-
cr”, [TAM. Ipunoxenue, 2016, Ne 9, 46-48

[2] A. C. UrnaroeB, A. A. Cemenos, [I. B. Becnanos, O. C. 3aukun, “T'HOpuaHBIA MOAXOX
(SAT+ROBDD) B 3agauax KpHIITOaHaIM3a MOTOYHBIX cucTeM mmmgposanus”, IIIM, 2009,
npuwioxenue Ne 1, 19-20

Hayunslit pykoBogutess — Kaui. ¢us.-mat. Hayk K. B. Kanrus,
kaHg. ¢pus.-mat. Hayk H. H. Tokapesa
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YJIK 004.056.55
Kpunroananus 0a30B0ii Bepcuu Kpunrorpaguueckoi cucreMsl ¢
OTKPBITBIM KJIFOYOM, OCHOBAHHOI1 Ha CJIOKHOCTH PellieHUs] CHCTEMBbI
NMOJIMHOMHATBHBIX YPABHEHHUH B LIeJBIX YHCIAX
E. B. 3aBanmmnza
HoBocubupckuii TocyqapCTBEHHBI YHUBEPCHUTET
JlaGopatopus kpunrorpaduu JetBrains Research

B 2016 roxy the National Institute of Standards and Technology npencrasun
Joknman moja HasBanueM Report on Post-Quantum Cryptography, B xotopom
[ojlaraeT, 4YTO MPUIUIO BpeMs MOATOTOBUTHCS K IEpexoJy Ha KBaHTOBO-
YCTOWYMBYIO KpUNTOrpaduio, Tak Kak HEKOTOpbIE 3a/1auu, JIeXKallie B OCHOBE
UCTIONB3YIOMINXCSL HA MPAKTUKE KPHUIITOrpauIecKux aaropuTMOB, MOTYT OBITH
peIIeHBI KBAHTOBBIMU KOMIIBIOTEPaMH.

B cBa3m c 3TEM aBTOpOM HacrosAmed paboTel M coaBTOpamH ObLIa
MIPEATIPHUHSTA TIOMBITKA CO34aTh HOBBIM aNrOpUTM MIN(POBaHHS AAHHBIX C
OTKPBITHIM ~ KJIIFOYOM, OCHOBAHHBI HA PpEIICHHH CHCTEMBI OJHOPOIHBIX
MIOJIMHOMHAJIGHBIX YPaBHEHUI! B LIENBIX YKCIIaX, OIIMCAHHBIN B cTaThe [1].

JanHast paboTa MOCBSIIEHa KPUNTOAHAIN3Y OMHCAHHOW CUCTEMBI. ABTOPOM
paboThl ObLT pa3pabOTaH aIrOPUTM aTakd Ha OCHOBE MOJAOOPAaHHOTO OTKPHITOIO
TEeKCTa, KOTOPBIA IO3BOJIAET TMOJNYyYUTh HAOOpP MAaTpHUI], KOTOpPBIE MOTYT
HCTIONB30BaThCS B KAYECTBE 3aKPBITOTO KITFOUa.

Tak xak HabOp TMOJMHOMOB, HCIOJB3YIOMUIICS B KadyeCTBE OTKPHITOTO
KJIF0Ya, HWMEET CTPOro OINpEeAE]eHHBIH BHI, CIIEIOBATEIHHO, BO3MOXKHO
BBIPa3uTh KOX(P(UIMEHTHl ITOJMHOMOB OTKPHITOTO KII0Ya Yepe3 3JIEMEHTHI
Marpull. Tak Kak KO3(QQHIUECHTH H3BECTHBI, MOKHO COCTaBHTb CHCTEMY
YpaBHEHHI, pelieHne KOTOPOi 1acT HabOp MCKOMBIX MaTpHIL.

Ha ocHoBe &maHHOTO HCClIeOBaHUs NPOBEIEHA OIEHKa IeJIeCO00pa3sHOCTH
YCIIOXKHEHHS CHCTEMBI M ITyTH €€ pealn3alyu.

Pa6oTa BBIMONHEHA MPU MOICPKKE TabopaTopun kpunTorpaduun JetBrains
Research.

[1] Bonkos, E., BapanoB A., 3aBamummua E. Kpunrtorpaduueckas cucreMa ¢ OTKPBITBIM
xmoaom // Second Conference on Software Engineering and Information Management
(SEIM-2017), 2017. C. 41-44.

Hayunsrit pykoBoauTeNs - KaHA. (U3.-MaT. HAyK, Aoi. Tokapesa H. H.
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VIK 519.7

O uymncJie B3aUMHO 0JJHO3HAYHBIX BEKTOPHBIX 0YJIEBbIX (DYHKIUI
CIenuaJIbLHOT0 BUAA

M. M. 3anoabckuit
HoBocubupckuii rocyqapCTBeHHbII YHUBEPCUTET

S-6:710kU [1] sBNSIOTCA YacThio 6109HBIX MH(pPOB. C TOUKU 3peHHs] MaTeMaTH-
KU S-0JI0K — 9TO OMEeKTUBHAsI BEKTOpHAst OyneBa (pyHKIMs, 00aaJaomas psiaom
CBOICTB, 00eCNEeUnBAIOIIUX KPUMITOCTOMKOCTD. Ha npakTrke MOUCK MOAXOISAIINX
yHKIMIT TIepebopoM Jlaxke MPU MaJIOM YUCJIe MIEPEMEHHBIX He MpPeACTaBIseTCs
BO3MOXHBIM. MBI Oy[IeM U3y4aTh HEKOTOPHIE KJIACCH BEKTOPHBIX OYyJIEeBBIX (DYyHK-
LW, ¥ UCKATh YUCJIO OMEKIINIA B HUX.

Iycts 7T € S,, — IPOU3BOJIbHAS TEPECTAHOBKA. PaccMOTpUM OUHAPHBINA BEKTOP
r €y, 2 = (v1,...,2,), 0003HaumM 7(2) = (Tr(1),- -, Tr(n)). [IycTh f —
OyneBa (pyHKIHMS 1 IEPEMEHHBIX, IOCTPOUM BEeKTOPHYIO Oy/ieBy (QyHKIMIO F :
F3 — F5 cnepyiommm obpa3om:

Fr(z) = (f(2), f(n(@)), f(x*(2)),..., f(x""}(2))).

Tak:ke BBEEM MHOXECTBO A ,, BCEX TAKMX BEKTOPHBIX OY/IEBBIX (DYHKIMH.
Iycts p(z) = (Tpn, 1, T2, ..., Tp—1), — IUKIMIECKUIA CIBHT.

IIpennoxenne 1. ITycme @ € Sy, Frr € Ay . das noboeo © € F5 u k € Z
cnpasedaueo coomnowenue: Fy (¥ (x)) = p~*(Fy(z)).

Beenem geiictBue m Ha MHOXecTBe [P} creayoonmm obpasom: x o m = m(x).
JlanHoe neiicTBue pasousaer F5 Ha opouTsl otHOCHTEBHO 7. 32 O (x) 0603Ha-
9UM OpOMTY, TIOpoXkaAeHHYI0 = € 5. O6o3HaunM uepes O ;, MHOKECTBO BCEX
opOuT OTHOCHUTENBHO 7. U3 mpeasioxenust 1 cienyer:

IIpennoxkenue 2. Ilycmo m € S, Fr € Ay . [as aoboii opoumet o € O p,
cyuecmeyem g € O, , makas, umo o6pas mHovycecmsa o nod deiicmeuem Fy
A€AHCUM 8 §.

Beenem orobpaxkenne Vi, : Or, — O p1ak: Vi (O (x)) = O,(Fr()).

JlaHHOE O0TOOpakeHNe KOPPEKTHO OIPEEsIeHO B CHILY MpeAIoKeHHs 2.

IIpennoxenue 3. F, € A, 63aumHo 00HO3HAUHA MO20a U MOALKO MO20a
Vr_ n 63auMHO 0OHO3HauHasA PyHukyus. Ecau Vg, Ouekyus, mozoa 01 Kadic-
oot opbumul 0 € O ,, geinonneno: |Vr_,(0)] = |o|.
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O603Haunm uepes MFE  mHO)ecTBO opout 0 € O, ,, Takux, uro |o| = k.

™n

ko _ gk cok _ ¢
Bynem cunrars M, = M. 3ameTiM, UTO BHINONHEHO: 27 = 7, o) £ - [ M|

Teopema 1. Ecau [MF, | = |MF| 0as ecex k, mozoa wucao 63aummo oonosmau-

rk
Hblx PyHKkyuii uz A, , pasro Hk:km |ME - kMl unaue ono nycmo.

PaGora BbIMoJIHEHA NpU TOAEPXKKe JabopaTopun Kpunrtorpaguu JetBrains
Research.

[1] Toxapesa H. H. Cummerpuunas kpunrorpacus. Kparkuit kypc / Yue6noe nmocodue: Hoso-
CHOMPCKHMIi rocyapcTBeHHbII yHuBepeuteT, 2012.

Hayunsrit pykoBonutens — KaHa. ¢pus.-mat. Hayk. H. H. Tokapea
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V]IK 519.7

Kpunrorpajguyeckue cBoiictBa S-0J10ka, IOCTPOEHHOI0 Ha OCHOBE OyJ1eBOM
(yHKIMH U epecTAHOBKH

J. A. 3r00nHa
HoBocubupckuii rocy1apCTBEHHBIN YHUBEPCUTET
Jlaboparopus kpurnrorpaduu JetBrains Research

S-O70KH WTpalOT PEIAloIIyI0 POJNb B O0ECIEYeHWH CTOWKOCTH OJOYHBIX MH(POB
OTHOCHTENIFHO Pa3HBIX THIIOB aTak. S-0710K - 3TO OTOOpPaXCHHE M3 MHOXKECTBA ABOMYHBIX
BEKTOPOB JUTHHBI N B ceOs. [IpoexTrpoBathest S-0s10kM JOMKHEI HanOoJee TIATEIbHO, TaK
KaKk CTOHKOCTh Bcero mmdpa CyImIECTBEHHO 3aBUCHT OT HX KPHITOTpa(UUecKux
XapakTepUCTHK. B maHHO# pabore S-OJIOK TMpencTaBieH B BHIE BEKTOPHOW OyIeBOM

byukiun E(x) = (f(x),f(n(x)),f(rtz(x) )y e, f(@1(x) )), rae f - Oymesa QyHkuus
OT N HEepPEeMEHHBIX, T - MEepPEeCTaHOBKAa N 3JIEMEHTOB. bblin M3yueHbl KpunTorpaduueckie
cBoiicTBa F, (Takue Kak aneebpauieckas cmenems, HeluHeuHocms, oupgepenyuaivhas §-
PABHOMEPHOCMb M YPAGHOGEULEHHOCMb) B 3aBUCHMOCTH OT CBOMCTB f U mepecTaHoBKH T
(mampumep, mepecraHoBka-Oecriopsanok[1]) mpu mansix 3HaueHHAX N. BekropHas Oyiesa
¢yHkuns F HaseiBaercs nuddepeHnansHo 6-paBHOMEPHOH, €CIH MU JIF00OM BEKTOpE a #
0 u npousBosmbHOM Bektope b ypaBHenue F(x) @ F(x @ a) = b umeer He Ooinee o
petenuit, rae & - nenoe ynucno. MUHAMAaNbHOE BO3MOKHOE 3HaueHue & paHo 2. ITycts A}
MHOXKECTBO IEPECTAHOBOK-OCCIIOPSIKOB Ui 4 DIEMEHTOB, COAEpXKallee TPH Mapbl
MEPECTAHOBOK TAaKWX, UTO nz_il =m,i=123im, = (2341),m,, =(4123),my, =
(2413),m,, = 3142),m,= 3421),m,, = (4312).

Yreepxaenune 1. Jlins n = 2,3 cymectByer OyneBa ¢yukims f or N mepemeHHBIX U
TIEPECTAHOBKA-0ECIOPANIOK T € Sy, Takas, 4T0 = 2. [l BCAKON NepecTaHOBKU T € Al
cymectByeT Oynesa Gpynxims f or 4 nepemennbIx Takas, uro 8, = 2.

JlaaHBIE pe3ynbTaThl OyAyT HCIONB30BAHBI IS IOCTPOEHHS S-0l0Ka Ha OCHOBE
OyJeBoil GYHKIMH U TIEPECTAHOBKH ¢ HEOOXOAUMBIMHU KPUNTOTpahUIECKUMU CBOMCTBAMH.
PaGorta BBITIONHEHA TIPH IO IepKKe Taboparopuu kpunrorpaduu JetBrains Research.

1. P.Crennu. Ilepeuncnurenshas komOuHaTopuka. — M.: Mup, 1990.

Hayunsrii pykoBoautens — k.¢.-m.H. H.H.Tokapesa
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VIK 519.7
AHaJIN3 raMMbl, OPOK/1aeMOi KOMOMHUPYIOIIIM FeHEPaTOPOM

M. A. I1angepon
HoBocubupckuit rocygjapcTBEeHHbIN YHUBEPCUTET
Jla6oparopus kpunrorpacduu JetBrains Research

Peructpsl caura c JIMHEHHO# 00paTHON CBA3BIO MCTIONB3YIOTCS JUISI TOCTPOSHHUS
TeHepaToOpoB B MOTOYHBIX mMdpax. KoMOMHUpyOIHEe reHepaTopsl COCTOAT U3
HECKOJIbKO PErMCTPOB CABUra C JIMHEHHOW OOpATHOW CBA3bIO, NPHUUYEM KaikKIblii
PErHCTp MMEET CBOIO [UIMHY 7; W UCIIONB3YET CBOIl MPUMHUTHBHBIA MHOTOYJICH
ISl i3MeHeHus1 coctosiamid. Bynesa dyukiwms h( X, ..., X,,), rie X; — GuroBas
CTPOKa perucTpa ¢, OyJeT reHepupoBaTh ICEBJOCTyYaliHyI0 [TOC/IEI0BATEILHOCTD
2amma. 3arnonHeHue BeKTopoB X1, . . . , X, KOHKpETHHIMU 3HAUCHUSAMH OyeM Ha-
3bIBaTh COCTOsIHUEM peructpoB. CocrosHue HyneBoe, ecm Bee X; = (0,...,0).
PaboTa KOMOMHUPYIOIIETO reHepaTopa noapoodHee onucana B [1]. Tak kak Mbl He
UCHOJIb3yeM HyJIEBOE COCTOSHUE B KaXJOM perucrpe, To odlee KOJINYeCTBO CO-
CTOSIHHMIT PErMCTPOB He mpeBocxoqut (2" —1)(2"2 — 1) ... (2" — 1). [Ipu 3TOM
MAaKCUMYM JOCTUTaeTCs mpH (7, n]—) =1,rmmei,j=1,...,m,i # j. B nan-
HOii paboTe MCCaeI0BaIoch, Kak BHIOOP (DYHKLMK h BIMsSET Ha IEepPUOSUYECKHE
CBOICTBA reHEpUPYeMOil raMMbl. A MMEHHO, OIpeJeeHO KOIMYECTBO OyJIeBBIX
(yHKLIMIT h, KOTOPBIE TOPOXKAIOT MOCJIEI0BATEIBHOCTD C IIEPUOIOM MEHbIIE, YeM
(2m —1)(2" —1)...(2" — 1). Takue pyHKUNK OyIEM HA3BIBATD HENOOX0O5i-
WUMU.

Teopema 1. Ilycmv m — Koauuecmgo pezucmpog ¢ OAUHAMU N, . .., My H
(2" —1)(2"2 —1)...(2" — 1) = p{'p3?...p%=, 20e p; pasauunsie npo-

cmole uucaa, o; > 0. Tozda koauuecmeo nenoodxoosuux 6yneeolx PyHKUuLl om
N NEePEMEHHBIX 051 KOMOUHUPYIOUe20 2eHepamopa PaeHo

2. Z ((_1),61+---+ﬂ5+1Qpi”’”l...pg’-*“*-*)7
BEF3, 50
20e B = (B1,-.-,0s)

Pabora BbIMoJHEHA NPU TOIEPXKKe JTabopaTopun Kpurnrtorpaduu JetBrains
Research.

[1] H. H. TokapeBa. Cummerpuunas kpunrorpagus. Kpatkuii kypc. — HoBocubupckwit rocyaap-
CTBEHHBII yHUBepcuTeT. — 2012.

Hayunsit pykosogutens — k.¢.-m.H. H. H. Tokapesa
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VIK 519.7
O nexoMno3uIH BEKTOPHBIX 0yJI€BbIX (DyHKIHI

I'. M. [TunTyc
HoBocubupckuii rocyjapcTBEHHbI YHUBEPCUTET
Jlabopatopus kpunrorpagun JetBrains Research, r. HoBocubupck

Bexmopnoii 6yaesoii (n, m)-gpynkyueri Ha3bIBaeTCs MPOM3BOIBHOE 0TOOpa-
xenue puga FY — 5. BekropHast OyneBa (n,m)-QpyHkuus F' 3amaercss Ha-
60OpOM M3 1 KOOPIAMHATHBIX OYyNeBBIX (DYHKLHHA OT 7 NEPEeMEHHBIX MPABHIOM
F(z) = (f1(x), fa(x), ..., fm(x)), x € F. HerpuBnanbHble JNHEHHbIE KOMOMHA-
wn pyskuwmit { f;})" | Ha3BIBAOTCS KOMROHEHmMHbIMU PyHKyusMu. MAHIMAIb-
Hasi U3 ajareOpanyecKux crerneHeil KOMIOHEHTHBIX (DyHKLMI Ha3plBaeTCs anred-
pamdeckoit cmenenvio pyukimu F' u obo3navaercs yepe3 deg(F).

3agavya HaXOKICHUS ASKOMITO3UIINK BEKTOPHOM OyieBoi (n, n)-pyHkimn F
COCTOHT B MOMCKE JIByX BEKTOPHBIX OyneBbX (n,n)-gyHkumii G, H, Takux 4ro
max {deg(G),deg(H)} < deg(F) u F(z) = G(H(z)) nna Beex © € F.
BekropHyio 6yneBy (n, n)-pyHkuuo F crenenu d > 2, I0IMyCKAOILYIO TAKYIO jie-
KOMITO3HIIMIO, OyeM Ha3bIBaTh pazaodcumoti. PelieHne NaHHOM 3a1a4u PHIMEHH-
TEJIbHO K BEKTOPHBIM OyJIeBBIM (DYHKIIMSM, ONMCHIBAIOLINM HeJIMHEiHbIe Tpeodpa-
30BaHUS PayHI0BOM (DyHKIIMKM CUMMETPUYHOTO GJIOYHOTO HIKM(pa, UMEeT MpsIMoe
OTHOIIIEHHUE K 3alUTe OT aTak [0 CTOPOHHUM KaHajiam [1].

IBe BextopHble (n,n)-GyHkimu F' u G Ha3BIBAOTCA pacuupento agghun-
Ho 3xsusanenmuvimyu (EA-3KBUBaJIEHTHBIMU), €CJIM CYLIECTBYIOT J1B€ ad(pUHHBIE
(n,n)-nopcranoBku A, B u adpdunnas (n,n)-¢pyukuus C, takue uro G(x) =
(BoFoA)(x)+C(x),z € F.

Vreepxkaenue 1. ITycmo (n,n)-pynkuyus F cmenenu d > 2 pasaoscuma. Tozda
(n,n)-gpynxuus F' = Ay o F o Ay, 20e Ay, Ay — npouseonvhwie agppunmvle
(n, n)-nodcmanosku, maxaice 6yoem A8AANMbCSL PAZNOHCUMOLL.

Ecau F npedcmasuma ¢ sude komnozuyuu 0gyx (n,n)-dpynuxyuii G, H cme-
nenu menvute d, maxux umo ynxuus H oopamuma, u oan dynxuyuu H~' cnpa-
sedauso ycaosue deg (H™') < max {deg(G),deg(H)}, mo (n,n)-dynxuyus
F" = F + Ag 6ydem paznodxcumoii 0as moboii agppunnoii (n, n)-gynxuuu Ay .

[1] Bilgin B., Nikova S., Nikov V., Rijmen V., Tokareva N., Vitkup V., Threshold implementations
of small S-boxes, Cryptogr. Commun., 7(1), 33-33 (2015).

Hayunsiit pykoBogurens — K.¢p.-M.H., gou. H. H. Tokapesa, A. B. Kyuenko
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YK 004.056.5

Ipumenenne SAT pemareseii B KpUNTOaHATIN3E
J.A. Coponona
HoBocubupckuii TocyqapCTBEHHBI YHUBEPCHUTET
Jlabopatopus kpunrorpagpuu JetBrains Research

B ocHOBE 0HOT0 U3 METOOB aHAIM3a IH(POB JCKHUT UCIOIL30BaHne SAT-
pemareneid. o 3Toro MCXomHbIH mMudp WiIK X3HI-(OYHKIMS 3alMCBHIBAIOTCS B
BHJIE JIOTHUECKON (POPMYIIBI, HCTHHHOCTE KOTOPOM MPEICTOUT YCTaHOBUTEL SAT-
pemateno.SAT-3aaua — 3amada ONpeAeNICHHUsS BBIIOJHUMOCTH JIOTHYCCKOM
dopmynbi[1].SAT-pematenns — mnporpamMma, KOTOpas HINET O3HAYMBAHHE
MIEPEMEHHBIX, Ha KOTOPOM (hopMyiIa HCTHHHA.

CyIIECTBYIOT JBa MPOEKTA IS OMMCAHMS KpUITOrpabHuyecKux ITHGPOB —
Transalg[3] u Grainofsalt[2]. IlepBblii uMeeT 3aMETHBIH HEIOCTATOK —
OTCYTCTBHE JTOKYMEHTALUHU, 3aTPYIHSIOIIEE MCIOIh30BaHue. BTOPOi MOAXOAUT
TOJILKO JJIsI OMHCAaHUS INMHGPOB, OCHOBAHHBIX HAa PETHCTPaxX CABHIa, XOTS
XOPOIIIO ONITUMHU3HUPOBAH U YAOOCH B padore.

Henp maHHON pPabOTHI — pa3paboOTKa JETrKOBECHOTO, THOKOTO, CBOOOIHO
paCIIUPSIEMOro MPOrPaMMHOTO KOMIUIEKCA I ONMHCaHWsS IMH(POB, Xd3II-
GyHKIUH ¥ KpUOTOrpagHUUIecKuX 3a7ad, MO3BOJLIONMIETO Mony4ath kak KHO,
TaKk ¥ pealn3aldi0 CcaMOro alroOpuTMa JJs TPOBEPKH IPABIIBHOCTH
peanu3anii ¥ TECTHPOBAHUS KPUNTOCTOHKOCcTH ApyruMu cpeactBamu (NIST,
Dieharder).

PeanmzoBan mpocToll MPeIMETHO-OPHUCHTUPOBAHHBIN S3BIK  OMHCAaHUS
mmdpoB — ocHOBA MpoeKTa. SIIpo mporpaMMbl HacuuThIBaeT 250 CTpOK Koza Ha
C++, 4TO obecrnieunBaeT JIETKYIO pacuupseMocTh
¢byukiponana.OnucansimndpsiA5/1, Grain, Cryptol, Bivium, Trivium, Hitag2.
bbbt npoBesieHs! ataky yrajaii-u-Berauciu Ha mmgp AS/1.

PabGora BeImMONIHEHa TpU  TOAAEpPKKE  JabopaTopuu  KpuUOTOTpaduu
JetBrainsResearch.

[1] Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh, “HANDBOOK OF
SATISFIABILITY, Frontiers in Artificial Intelligence and Applications”. 10S
Press, 2009

[21 Mate Soos. “Grain of Salt — An Automated Way to Test Stream Ciphers throuah
SAT Solvers”, Workshop on Tools for Cryptanalysis, Royal Holloway, University
of London, 2010.

[3] WM. B. Ornvuiennnkos. A. A. CeméHoB. “TexHONOrus TpaHCIALUN KOMOMHATOPHBIX
npobuieM B OyneBbl ypasHenust”, [1[JM, 2011

Hayunsrit pykoBogutens — kaua.¢pus.-mat.Hayk K.B. Kanrun
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YIAK 519.7

AJIropuT™M MeK-0JI0KY el H B3auMoIeiicTBUA 1151
cLieHapHs 32J10T0BOI0 y/epPKaAHUsI

A. J1. CorueB
HoBocubupckuii TocyqapCTBEHHBI YHUBEPCHUTET
JlaGopatopus kpunrorpaduu JetBrains Research

C pocToM pasiIYHBIX peann3anuii OJOKISHHOB - IEIeHTPATU30BaHHBIX 0a3
JAHHBIX TPaH3aKIWH, B KOTOPBIX TPAaH3aKIMU XPAaHATCA B CTPYKTYpEe IOAaHHBIX,
Ha3bIBACMOW OJIOKH, - TIOSBISETCS HEOOXOAMMOCTH pEHICHHUs 3aJaddl HX
B3auMoneicTBus. C TEXHHYECKOM TOYKM 3PEHHS MOKHO BBIICINTH 3 THIA
B3auMojieiicTBus OnokdeiHOB: HoTapuanbHble cxembl, bokoBbie nenu u XoaIi-
O6nokupoBka. PaccmoTpuM X5II-OJOKHMPOBKY - aJITOPHTM, OIMCHIBAIOIINI
JeHcTBUSA B IIeNOYKe A U IeTouke B, KoTopble MIMEIOT OAMH U TOT K€ TPUITED,
KaK IpaBHJIo, 0OHapy»XeHUe Mpoodpa3a KOHKPETHOTro xama. bonee noapodHoe
onMcaHHe MOXKHO HaWTH B cTaThe B. Byrepuna [1].

Ha nanHBIi MOMEHT cymiecTByeT anroputm "ArtomapHoro oOmena'[2]
BaITIOTAMU B JIBYX Pa3lIMYHBIX CETSIX, OCHOBAaHHBIA Ha X3II-OJOKHPOBKE. JTO
3HAYUT, YTO B PE3yJIbTaTe CIEIKH B O0EHMX ILEIAX BajioTa JMOO AOMAeT 1o
ToJTydaTeds, JIM0o BepHeTCs 00paTHO K BIIAJEIbILy.

OCHOBHBIM pE3yJIbTaTOM JAaHHOW pPabOTHI SIBISETCS CO3JAaHHE aIropHUTMa
JUISL CHIEHapHsl 3aJI0rOBOTO YJEpsKaHMs, MCHOJIB3YIOMETO Hie "ATOMapHOTO
oOMeHa" ¢ HEKOTOPbIMH W3MEHEHHSIMH. B clieHapuH 3aj0roBOrO ylepiKaHHs
MOJIpa3yMeBaeTCsl 3aKphITHE aKTUBOB A B IeMM X MNPH HAJUYUU YCIOBHH
OJIOKUPOBKH B 3aBHCUMOCTH OT aKTHMBHOCTH B 1ienu Y. M3 atoro cnenyert, 4to
Bce MpoxoauT B aBa dtama: (1)bmokupoBka 3amora Ha BpeMs HCIOJIb30BaHUS
aKkTHBOB; (2)Bo3BpaT 3amora moyib30BaTeNI0 uepe3 HEKOTOpOoe BpeMs MpHU
YCIIOBHH BO3BpAIllEHHUs] aKTUBOB O0paTHO WX BiaAelbily. CO3MaHHBIA aIrOpUTM
peanmusyercs Ha mwiatdgopme Ethereum [3]. Kox s smart-KOHTpaKTOB MUTIETCS
Ha s3bike Solidity. TectupoBanue anroputMa npoBouTcs Ha si3bike Python.

Pabota BrIoIHEHA IpU TOLAEpsKKe TabopaTopuu kpunrtorpaduu JetBrains
Research.

[1] B. Byrepun, «Chain Interoperability». R3 Research, Centsiops 9, 2016.

[2] Mopuc Xepauxu, «Atomic Cross-Chain Swaps», PODC’18, Uromnp 23-27, 2018, Drxem,
Benukobpuranus

[3] A. JIeBuc, «A Gentle Introduction to Ethereumy», Oxts16ps 2, 2016.

Hayunsle pykoBoantenu — k.¢.-M.H. H.H.Tokapesa, I1.A.Ca3oHoBa
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VIK 519.7

CBs13b KBaTepHAPHBIX U OyJIeBbIX GeHT-(OyHKIHI

A. C. llTanopeHko
Huctutyt matematuku uM. C. JI.Co6oneBa CO PAH, r. HoBocuoupck
HoBocubupckuii rocyjapcTBEHHbIH YHUBEPCUTET
Jlaboparopus kpurrorpacpun JetBrains Research, r. HoBocubupck

B [1] Gbum onpenesnenst g-apuvie (g : Zq — Zg) OeHT-QyHKIMKM jist ¢ > 1.
Uzyyenne Takux QpyHKIHI OBUIO 00YCIIOBIICHO KeJJaHHEM aBTOPOB 00OOIIHTH pe-
3yJbTaThl paboThl [2] 0 mpuMeHeHuu OyseBbix OeHT-(pyHKImii B cuctemax CDMA
(Code Division Multiple Access). B HacTosieit padote ucciienyercs: CBs3b KBa-
TEpPHAPHBIX U OYJIeBbIX OEHT-(PYHKIIHMIA.

Vreepxkaenne 1. ITycmo g(xv+2y) = a(x,y) +2b(x,y), 20e v,y € Zouaub—
Oyaesvl pynKyuU 0m 2 nepeMentbIX, S6A5emcs KeamepHapHoii 6enm-gyuxyuer,
moezda b u a ® b — 6enm-gynuxuyuu.

Teopema 1. ITycmo g(x+2y) = a(x,y)+2b(x,y), 20e x,y € Z5 uaub— oyresv
PyHKYUU OM 2N nepeMEeNHHbIX, SIBASEMCS K8AMEPHAPHOT Denm-PyHKyuel, mozia
bua ® b— neauneiinvie pynxyuu npu 11060M N.

VrBepikaenue 2. Keamepnapnas ynxuyus om n nepemnnvix g(x + 2y) =
a(z,y) + 2b(x, y), komopas ne seasemcs 6enm-gpynkuueri, mozda kax bu a ® b
— Oyaesvl Denm-PyHKUUUL Om 2N NEPEMHHDIX, CYulecmeyen 0as 06020 n.

Vreepxkaenne 3. Keamepuapnas dymxuus om n nepemunvix g(x + 2y) =
a(z,y) + 2b(x,y), komopas seasemcs benm-gpynruueti, mozoa kax b u a ® b
He A8ASTIOMCST OeHM-PYHKYUSIMU OM 21, NEPEMEHHBIX, CYUecmayem 0ast A00020
n> 1

Pab6oTa BeIIONTHEHA MTpU MOAEpKKe JTJabopaTopun Kpunrorpadru JetBrains
Research u POOU (18-07-01394).

[1] Kumar P. V., Scholtz R. A., Welch L. R. Generalized bent functions and their properties. J.
Combin. Theory Ser. A 40. 1985. P. 90 — 107.

[2] Olsen G. D., Scholtz R. A., Welch L. R. Bent-function sequences. IEEE Trans. Inform.
Theory(1982) P. 858 — 864.

Hayunsle pykoBogutesm — K. ¢.-M. H, pou. H. H. Tokapesa, A. B. Kynenko
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